Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877837

RESUMO

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança Climática
2.
Ecol Appl ; 31(2): e2238, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067874

RESUMO

Increasing aridity is a challenge for forest managers and reducing stand density to minimize competition is a recognized strategy to mitigate drought impacts on growth. In many dry forests, the most widespread and common forest management programs currently being implemented focus on restoration of historical stand structures, primarily to minimize fire risk and enhance watershed function. The implications of these restoration projects for drought vulnerability are not well understood. Here, we examined how planned restoration treatments in the Four Forests Restoration Initiative, the largest forest restoration project in the United States, would alter landscape-scale patterns of forest growth and drought vulnerability throughout the 21st century. Using drought-growth relationships developed within the landscape, we considered a suite of climate and treatment scenarios and estimated average forest growth and the proportion of years with extremely low growth as a measure of vulnerability to long-term decline. Climatic shifts projected for this landscape include higher temperatures and shifting seasonal precipitation that promotes lower soil moisture availability in the early growing season and greater hot-dry stress, conditions negatively associated with tree growth. However, drought severity and the magnitude of future growth declines were moderated by the thinning treatments. Compared to historical conditions, proportional growth in mid-century declines by ~40% if thinning ceases or continues at the status quo pace. By comparison, proportional growth declines by only 20% if the Four Forest Restoration Initiative treatments are fully implemented, and <10% if stands are thinned even more intensively than currently planned. Furthermore, restoration treatments resulted in dramatically fewer years with extremely low growth in the future, a recognized precursor to forest decline and eventual tree mortality. Benefits from density reduction for mitigating drought-induced growth declines are more apparent in mid-century and under RCP4.5 than under RCP8.5 at the end of the century. Future climate is inherently uncertain, and our results only reflect the climate projections from the representative suite of models examined. Nevertheless, these results indicate that forest restoration projects designed for other objectives also have substantial benefits for minimizing future drought vulnerability in dry forests and provide additional incentive to accelerate the pace of restoration.


Assuntos
Secas , Árvores , Mudança Climática , Florestas , Estações do Ano
3.
Ecol Appl ; 29(8): e01979, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31332869

RESUMO

Higher tree density, more fuels, and a warmer, drier climate have caused an increase in the frequency, size, and severity of wildfires in western U.S. forests. There is an urgent need to restore forests across the western United States. To address this need, the U.S. Forest Service began the Four Forest Restoration Initiative (4FRI) to restore four national forests in Arizona. The objective of this study was to evaluate how restoration of ~400,000 ha under the 4FRI program and projected climate change would influence carbon dynamics and wildfire severity from 2010 to 2099. Specifically, we estimated forest carbon fluxes, carbon pools and wildfire severity under a moderate and fast 4FRI implementation schedule and compared those to status quo and no-harvest scenarios using the LANDIS-II simulation model and climate change projections. We found that the fast-4FRI scenario showed early decreases in ecosystem carbon due to initial thinning/prescribed fire treatments, but total ecosystem carbon increased by 9-18% over no harvest by the end of the simulation. This increased carbon storage by 6.3-12.7 million metric tons, depending on the climate model, equating to removal of carbon emissions from 55,000 to 110,000 passenger vehicles per year until the end of the century. Nearly half of the additional carbon was stored in more stable soil pools. However, climate models with the largest predicted temperature increases showed declines by late century in ecosystem carbon despite restoration. Our study uses data from a real-world, large-scale restoration project and indicates that restoration is likely to stabilize carbon and the benefits are greater when the pace of restoration is faster.


Assuntos
Mudança Climática , Incêndios , Arizona , Carbono , Ecossistema , Sudoeste dos Estados Unidos , Árvores
4.
Conserv Biol ; 32(4): 872-882, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29405380

RESUMO

Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch-size-induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland-bird demography and could be an effective component of climate-change adaptation.


Assuntos
Conservação dos Recursos Naturais , Pradaria , Animais , Aves , Ecossistema , Comportamento de Nidação , América do Norte , Temperatura
5.
Ecol Evol ; 6(9): 2978-87, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27217947

RESUMO

With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet-dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA