Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 47(12): 6478-6487, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31045204

RESUMO

Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer-ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Magnésio/fisiologia , Riboswitch , Bacillus subtilis/química , Bacillus subtilis/genética , Transferência Ressonante de Energia de Fluorescência , Ligantes , Magnésio/análise , Dobramento de RNA , Transcrição Gênica
2.
Biochim Biophys Acta ; 1839(10): 1005-1019, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863161

RESUMO

Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.

3.
ACS Photonics ; 11(4): 1592-1603, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38645993

RESUMO

Integrated single-molecule force-fluorescence spectroscopy setups allow for simultaneous fluorescence imaging and mechanical force manipulation and measurements on individual molecules, providing comprehensive dynamic and spatiotemporal information. Dual-beam optical tweezers (OT) combined with a confocal scanning microscope form a force-fluorescence spectroscopy apparatus broadly used to investigate various biological processes, in particular, protein:DNA interactions. Such experiments typically involve imaging of fluorescently labeled proteins bound to DNA and force spectroscopy measurements of trapped individual DNA molecules. Here, we present a versatile state-of-the-art toolbox including the preparation of protein:DNA complex samples, design of a microfluidic flow cell incorporated with OT, automation of OT-confocal scanning measurements, and the development and implementation of a streamlined data analysis package for force and fluorescence spectroscopy data processing. Its components can be adapted to any commercialized or home-built dual-beam OT setup equipped with a confocal scanning microscope, which will facilitate single-molecule force-fluorescence spectroscopy studies on a large variety of biological systems.

4.
Nat Commun ; 12(1): 1908, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772005

RESUMO

DNA replication in eukaryotes initiates at many origins distributed across each chromosome. Origins are bound by the origin recognition complex (ORC), which, with Cdc6 and Cdt1, recruits and loads the Mcm2-7 (MCM) helicase as an inactive double hexamer during G1 phase. The replisome assembles at the activated helicase in S phase. Although the outline of replisome assembly is understood, little is known about the dynamics of individual proteins on DNA and how these contribute to proper complex formation. Here we show, using single-molecule optical trapping and confocal microscopy, that yeast ORC is a mobile protein that diffuses rapidly along DNA. Origin recognition halts this search process. Recruitment of MCM molecules in an ORC- and Cdc6-dependent fashion results in slow-moving ORC-MCM intermediates and MCMs that rapidly scan the DNA. Following ATP hydrolysis, salt-stable loading of MCM single and double hexamers was seen, both of which exhibit salt-dependent mobility. Our results demonstrate that effective helicase loading relies on an interplay between protein diffusion and origin recognition, and suggest that MCM is stably loaded onto DNA in multiple forms.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Manutenção de Minicromossomo/genética , Complexo de Reconhecimento de Origem/genética , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Algoritmos , Sítios de Ligação/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Genéticos , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Sci Adv ; 4(4): eaar4817, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29740614

RESUMO

Scattering and absorption limit the penetration of optical fields into tissue. We demonstrate a new approach for increased depth penetration in light-sheet microscopy: attenuation-compensation of the light field. This tailors an exponential intensity increase along the illuminating propagation-invariant field, enabling the redistribution of intensity strategically within a sample to maximize signal and minimize irradiation. A key attribute of this method is that only minimal knowledge of the specimen transmission properties is required. We numerically quantify the imaging capabilities of attenuation-compensated Airy and Bessel light sheets, showing that increased depth penetration is gained without compromising any other beam attributes. This powerful yet straightforward concept, combined with the self-healing properties of the propagation-invariant field, improves the contrast-to-noise ratio of light-sheet microscopy up to eightfold across the entire field of view in thick biological specimens. This improvement can significantly increase the imaging capabilities of light-sheet microscopy techniques using Airy, Bessel, and other propagation-invariant beam types, paving the way for widespread uptake by the biomedical community.

6.
Biomed Opt Express ; 7(10): 4021-4033, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867712

RESUMO

We have investigated the effect of Airy illumination on the image quality and depth penetration of digitally scanned light-sheet microscopy in turbid neural tissue. We used Fourier analysis of images acquired using Gaussian and Airy light-sheets to assess their respective image quality versus penetration into the tissue. We observed a three-fold average improvement in image quality at 50 µm depth with the Airy light-sheet. We also used optical clearing to tune the scattering properties of the tissue and found that the improvement when using an Airy light-sheet is greater in the presence of stronger sample-induced aberrations. Finally, we used homogeneous resolution probes in these tissues to quantify absolute depth penetration in cleared samples with each beam type. The Airy light-sheet method extended depth penetration by 30% compared to a Gaussian light-sheet.

7.
Methods Mol Biol ; 1076: 759-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24108654

RESUMO

Single-molecule fluorescence studies of nucleic acids are revolutionizing our understanding of fundamental cellular processes related to DNA and RNA processing mechanisms. Detailed molecular insights into DNA repair, replication, transcription, and RNA folding and function are continuously being uncovered by using the full repertoire of single-molecule fluorescence techniques. The fundamental reason behind the stunning growth in the application of single-molecule techniques to study nucleic acid structure and dynamics is the unmatched ability of single-molecule fluorescence, and mostly single-molecule FRET, to resolve heterogeneous static and dynamic populations and identify transient and low-populated states without the need for sample synchronization. New advances in DNA and RNA synthesis, post-synthetic dye-labeling methods, immobilization and passivation strategies, improved dye photophysics, and standardized analysis methods have enabled the implementation of single-molecule techniques beyond specialized laboratories. In this chapter, we introduce the practical aspects of applying single-molecule techniques to investigate nucleic acid structure, dynamics, and function.


Assuntos
DNA/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência/métodos , RNA/isolamento & purificação , Espectrometria de Fluorescência/métodos , DNA/química , Fluorescência , Nanotecnologia , Conformação de Ácido Nucleico , RNA/química
8.
Methods Enzymol ; 549: 313-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25432755

RESUMO

RNA folding studies aim to clarify the relationship among sequence, tridimensional structure, and biological function. In the last decade, the application of single-molecule fluorescence resonance energy transfer (sm-FRET) techniques to investigate RNA structure and folding has revealed the details of conformational changes and timescale of the process leading to the formation of biologically active RNA structures with subnanometer resolution on millisecond timescales. In this review, we initially summarize the first wave of single-molecule FRET-based RNA techniques that focused on analyzing the influence of mono- and divalent metal ions on RNA function, and how these studies have provided very valuable information about folding pathways and the presence of intermediate and low-populated states. Next, we describe a second generation of single-molecule techniques that combine sm-FRET with the use of chemical denaturants as an emerging powerful approach to reveal information about the dynamics and energetics of RNA folding that remains hidden using conventional sm-FRET approaches. The main advantages of using the competing interplay between folding agents such as metal ions and denaturants to observe and manipulate the dynamics of RNA folding and RNA-ligand interactions is discussed in the context of the adenine riboswitch aptamer.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Dobramento de RNA , RNA/química , Adenina/química , Adenina/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Humanos , Metais/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , RNA/metabolismo , Riboswitch
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA