Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(22): e9639, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37817343

RESUMO

13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.


Assuntos
Dióxido de Carbono , Gases , Humanos , Animais , Expiração , Testes Respiratórios
2.
Mol Ecol ; 28(1): 49-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30449039

RESUMO

Ticks are obligatorily hematophagous but spend the majority of their lives off host in an unfed state where they must resist starvation between bouts of blood feeding. Survival during these extended off-host periods is critical to the success of these arthropods as vectors of disease; however, little is known about the underlying physiological and molecular mechanisms of starvation tolerance in ticks. We examined the bioenergetic, transcriptomic and behavioural changes of female American dog ticks, Dermacentor variabilis, throughout starvation (up to nine months post-bloodmeal). As starvation progressed, ticks utilized glycogen and lipid, and later protein as energy reserves with proteolysis and autophagy facilitating the mobilization of endogenous nutrients. The metabolic rate of the ticks was expectedly low, but showed a slight increase as starvation progressed possibly reflecting the upregulation of several energetically costly processes such as transcription/translation and/or increases in host-seeking behaviours. Starved ticks had higher activity levels, increased questing behaviour and augmented expression of genes related to chemosensing, immunity and salivary gland proteins. The shifts in gene expression and associated behavioural and physiological processes are critical to allowing these parasites to exploit their ecological niche as extreme sit-and-wait parasites. The overall responses of ticks to starvation were similar to other blood-feeding arthropods, but we identified unique responses that could have epidemiological and ecological significance for ticks as ectoparasites that must be tolerant of sporadic feeding.


Assuntos
Comportamento Animal/fisiologia , Dermacentor/genética , Doenças do Cão/parasitologia , Transcriptoma/genética , Animais , Dermacentor/patogenicidade , Dermacentor/fisiologia , Doenças do Cão/genética , Cães , Regulação da Expressão Gênica
3.
J Exp Biol ; 222(Pt 6)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886030

RESUMO

Processing food (e.g. ingestion, digestion, assimilation) requires energy referred to as specific dynamic action (SDA) and is at least partially fuelled by oxidation of the nutrients (e.g. proteins and lipids) within the recently ingested meal. In ectotherms, environmental temperature can affect the magnitude and/or duration of the SDA, but is likely to also alter the mixture of nutrients that are oxidized to cover these costs. Here, we examined metabolic rate, gut passage time, assimilation efficiency and fuel use in the lizard Agama atra digesting cricket meals at three ecologically relevant temperatures (20, 25 and 32°C). Crickets were isotopically enriched with 13C-leucine or 13C-palmitic-acid tracers to distinguish between protein and lipid oxidation, respectively. Our results show that higher temperatures increased the magnitude of the SDA peak (by 318% between 32 and 20°C) and gut passage rate (63%), and decreased the duration of the SDA response (by 20% for males and 48% for females). Peak rate of dietary protein oxidation occurred sooner than peak lipid oxidation at all temperatures (70, 60 and 31 h earlier for 20, 25 and 32°C, respectively). Assimilation efficiency of proteins, but not lipids, was positively related to temperature. Interestingly, the SDA response exhibited a notable circadian rhythm. These results show that temperature has a pronounced effect on digestive energetics in A.atra, and that this effect differs between nutrient classes. Variation in environmental temperatures may thus alter the energy budget and nutrient reserves of these animals.


Assuntos
Proteínas Alimentares/metabolismo , Digestão , Metabolismo Energético , Fenômenos Fisiológicos da Nutrição Animal , Animais , Metabolismo Basal , Dieta , Meio Ambiente , Feminino , Lipídeos , Lagartos , Masculino , Oxirredução , Temperatura
4.
Oecologia ; 190(1): 1-9, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30478619

RESUMO

Predators often feed on a wide range of prey that can vary in behavior, morphology, and physiology. The net benefits that predators gain from prey are likely related to both prey nutrient content and prey morphology or defenses. For invertebrates, the exoskeleton is a morphological trait that varies widely among species and during ontogeny and could affect nutrient extraction by predators. The goal of this study was to determine how prey exoskeleton content affected predator nutrient intake, assimilation, and excretion by comparing spiders feeding on either larval or adult mealworms of similar size. We found that the proportion of prey energy invested in digestion was greatest in spiders consuming adult mealworm beetles which had higher amounts of exoskeleton than larvae. Further, spiders extracted a greater proportion of elements, macronutrients, and energy from the larval mealworms, which had lower amounts of exoskeleton. Interestingly, total nitrogen content of prey was not a predictor of nitrogen assimilation as spiders assimilated more nitrogen from the larval mealworms, which had lower total nitrogen content. While adult beetles had higher total nitrogen content, their discarded remains of prey had large amounts of nitrogen that was nutritionally unavailable for spiders (i.e., exoskeleton). These results suggest that prey exoskeleton can affect assimilation efficiency by predators, and that a combination of macronutrient and elemental analyses may be needed to examine the quality of prey for predators and the potential consequences of predation for nutrient flows (e.g., consumer assimilation, egestion, and excretion) in ecosystems.


Assuntos
Viúva Negra , Besouros , Tenebrio , Animais , Ecossistema , Feminino , Larva , Comportamento Predatório
5.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28148746

RESUMO

The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals.


Assuntos
Aminoácidos/química , Ácidos Graxos/química , Manduca , Néctar de Plantas/química , Animais , Larva , Músculos , Óvulo
6.
J Exp Biol ; 220(Pt 15): 2743-2747, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495867

RESUMO

The different reproductive strategies of males and females underlie differences in behavior that may also lead to differences in nutrient use between the two sexes. We studied sex differences in the utilization of two essential amino acids (EAAs) and one non-essential amino acid (NEAA) by the Carolina sphinx moth (Manduca sexta). On day one post-eclosion from the pupae, adult male moths oxidized greater amounts of larva-derived AAs than females, and more nectar-derived AAs after feeding. After 4 days of starvation, the opposite pattern was observed: adult females oxidized more larva-derived AAs than males. Adult males allocated comparatively small amounts of nectar-derived AAs to their first spermatophore, but this allocation increased substantially in the second and third spermatophores. Males allocated significantly more adult-derived AAs to their flight muscle than females. These outcomes indicate that adult male and female moths employ different strategies for allocation and oxidation of dietary AAs.


Assuntos
Aminoácidos/metabolismo , Manduca/fisiologia , Aminoácidos Essenciais/metabolismo , Animais , Comportamento Alimentar , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Manduca/crescimento & desenvolvimento , Néctar de Plantas/química , Fatores Sexuais
7.
J Exp Biol ; 220(Pt 23): 4330-4338, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187615

RESUMO

Starvation is common among wild animal populations, and many individuals experience repeated bouts of starvation over the course of their lives. Although much information has been gained through laboratory studies of acute starvation, little is known about how starvation affects an animal once food is again available (i.e. during the refeeding and recovery phases). Many animals exhibit a curious phenomenon - some seem to 'get better' at starving following exposure to one or more starvation events - by this we mean that they exhibit potentially adaptive responses, including reduced rates of mass loss, reduced metabolic rates, and lower costs of digestion. During subsequent refeedings they may also exhibit improved digestive efficiency and more rapid mass gain. Importantly, these responses can last until the next starvation bout or even be inherited and expressed in the subsequent generation. Currently, however, little is known about the molecular regulation and physiological mechanisms underlying these changes. Here, we identify areas of research that can fill in the most pressing knowledge gaps. In particular, we highlight how recently refined techniques (e.g. stable isotope tracers, quantitative magnetic resonance and thermal measurement) as well as next-generation sequencing approaches (e.g. RNA-seq, proteomics and holobiome sequencing) can address specific starvation-focused questions. We also describe outstanding unknowns ripe for future research regarding the timing and severity of starvation, and concerning the persistence of these responses and their interactions with other ecological stressors.


Assuntos
Dieta/veterinária , Privação de Alimentos/fisiologia , Inanição/veterinária , Animais , Inanição/metabolismo
8.
J Exp Biol ; 220(Pt 18): 3391-3397, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28729344

RESUMO

Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13C-labelled protein stores. These results provide evidence for a proximate cause of the physiological trade-off between larval growth and development, and provide insight into the energetic and nutrient costs that shape fitness trade-offs across life stages.


Assuntos
Corticosterona/administração & dosagem , Metabolismo Energético , Glucocorticoides/administração & dosagem , Ranidae/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metamorfose Biológica/fisiologia , Estado Nutricional , Ranidae/crescimento & desenvolvimento , Estresse Fisiológico
9.
Proc Biol Sci ; 283(1838)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27605506

RESUMO

Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Drosophila melanogaster/metabolismo , Animais , Alimentos , Estágios do Ciclo de Vida
10.
J Exp Biol ; 219(Pt 12): 1893-902, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27059066

RESUMO

The energetics of processing a meal is crucial for understanding energy budgets of animals in the wild. Given that digestion and its associated costs may be dependent on environmental conditions, it is necessary to obtain a better understanding of these costs under diverse conditions and identify resulting behavioural or physiological trade-offs. This study examines the speed and metabolic costs - in cumulative, absolute and relative energetic terms - of processing a bloodmeal for a major zoonotic disease vector, the tsetse fly Glossina brevipalpis, across a range of ecologically relevant temperatures (25, 30 and 35°C). Respirometry showed that flies used less energy digesting meals faster at higher temperatures but that their starvation tolerance was reduced, supporting the prediction that warmer temperatures are optimal for bloodmeal digestion while cooler temperatures should be preferred for unfed or post-absorptive flies. (13)C-Breath testing revealed that the flies oxidized dietary glucose and amino acids within the first couple of hours of feeding and overall oxidized more dietary nutrients at the cooler temperatures, supporting the premise that warmer digestion temperatures are preferred because they maximize speed and minimize costs. An independent test of these predictions using a thermal gradient confirmed that recently fed flies selected warmer temperatures and then selected cooler temperatures as they became post-absorptive, presumably to maximize starvation resistance. Collectively these results suggest there are at least two thermal optima in a given population at any time and flies switch dynamically between optima throughout feeding cycles.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Digestão , Metabolismo Energético , Moscas Tsé-Tsé/fisiologia , Animais , Sangue , Temperatura , Fatores de Tempo
11.
J Exp Biol ; 218(Pt 13): 2089-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987734

RESUMO

Pythons digesting rodent meals exhibit up to 10-fold increases in their resting metabolic rate (RMR); this increase in RMR is termed specific dynamic action (SDA). Studies have shown that SDA is partially fueled by oxidizing dietary nutrients, yet it remains unclear whether the proteins and the lipids in their meals contribute equally to this energy demand. We raised two populations of mice on diets labeled with either [(13)C]leucine or [(13)C]palmitic acid to intrinsically enrich the proteins and lipids in their bodies, respectively. Ball pythons (Python regius) were fed whole mice (and pureed mice 3 weeks later), after which we measured their metabolic rates and the δ(13)C in the breath. The δ(13)C values in the whole bodies of the protein- and lipid-labeled mice were generally similar (i.e. 5.7±4.7‰ and 2.8±5.4‰, respectively) but the oxidative kinetics of these two macronutrient pools were quite different. We found that the snakes oxidized 5% of the protein and only 0.24% of the lipids in their meals within 14 days. Oxidation of the dietary proteins peaked 24 h after ingestion, at which point these proteins provided ∼90% of the metabolic requirement of the snakes, and by 14 days the oxidation of these proteins decreased to nearly zero. The oxidation of the dietary lipids peaked 1 day later, at which point these lipids supplied ∼25% of the energy demand. Fourteen days after ingestion, these lipids were still being oxidized and continued to account for ∼25% of the metabolic rate. Pureeing the mice reduced the cost of gastric digestion and decreased SDA by 24%. Pureeing also reduced the oxidation of dietary proteins by 43%, but it had no effect on the rates of dietary lipid oxidation. Collectively, these results demonstrate that pythons are able to effectively partition the two primary metabolic fuels in their meals. This approach of uniquely labeling the different components of the diet will allow researchers to examine new questions about how and when animals use the nutrients in their meals.


Assuntos
Boidae/metabolismo , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Animais , Metabolismo Basal , Gorduras na Dieta/metabolismo , Camundongos , Oxirredução , Período Pós-Prandial/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-25446144

RESUMO

Due to various biochemical fractionation processes during lipid synthesis, the lipid molecules in the body contain substantially lower concentrations of 13C than the nonlipid molecules. Because of the isotopic differences between these two endogenous nutrient pools, any shift toward nonlipid fuel oxidation would be expected to increase in the δ13C of the exhaled breath. Interestingly, the possibility of whether or not an exercise-induced change actually occurs has been debated in literature for over two decades and researchers have still not reached a consensus. We measured ventilatory and metabolic variables before, during, and after exercise in forty-eight adults (n = 25 females, n = 23 males; 20.1 ± 1.9 years) assigned to either a resting treatment or one of three exercising treatments where they maintained a heart rate of 130, 150, or 170 bpm for 56 min. We found that the mean metabolic rates of the exercising groups increased 4.4-fold, 6.1-fold, and 7.7-fold above resting values, respectively. Exercise caused small increases in respiratory exchange ratios (e.g., from 0.83 ± 0.08 to 0.86 ± 0.10) indicative of increased carbohydrate oxidation, but these changes were too variable to be reliably correlated with exercise intensity. In contrast, the δ13C of the exhaled breath increased by 0.62 ± 0.19‰, 1.14 ± 0.29‰, and 1.79 ± 0.50‰, respectively, for the three groups and was significantly correlated with the intensity of exercise. We also show that the isotopic difference of the lipid and nonlipids of the body is similar (~ 2.7‰) even when consuming bulk diets that are isotopically distinct (> 8‰). If not corrected for, these exercise-induced changes in δ13C of the breath would be sufficiently large to skew the results of studies investigating the oxidative fates of exogenous nutritional supplements.


Assuntos
Dióxido de Carbono/metabolismo , Exercício Físico , Expiração , Adulto , Animais , Metabolismo Basal/fisiologia , Testes Respiratórios , Isótopos de Carbono , Feminino , Frequência Cardíaca/fisiologia , Humanos , Fígado/metabolismo , Masculino , Ventilação Pulmonar/fisiologia , Ratos , População Branca , Adulto Jovem
13.
Mol Ther Methods Clin Dev ; 32(1): 101191, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352271

RESUMO

Despite the implementation of lifesaving newborn screening programs and a galactose-restricted diet, many patients with classic galactosemia develop long-term debilitating neurological deficits and primary ovarian insufficiency. Previously, we showed that the administration of human GALT mRNA predominantly expressed in the GalT gene-trapped mouse liver augmented the expression of hepatic GALT activity, which decreased not only galactose-1 phosphate (gal-1P) in the liver but also peripheral tissues. Since each peripheral tissue requires distinct methods to examine the biomarker and/or GALT effect, this highlights the necessity for alternative strategies to evaluate the overall impact of therapies. In this study, we established that whole-body galactose oxidation (WBGO) as a robust, noninvasive, and specific method to assess the in vivo pharmacokinetic and pharmacodynamic parameters of two experimental gene-based therapies that aimed to restore GALT activity in a mouse model of galactosemia. Although our results illustrated the long-lasting efficacy of AAVrh10-mediated GALT gene transfer, we found that GALT mRNA therapy that targets the liver predominantly is sufficient to sustain WBGO. The latter could have important implications in the design of novel targeted therapy to ensure optimal efficacy and safety.

14.
Artigo em Inglês | MEDLINE | ID: mdl-23796822

RESUMO

In birds, fatty acids (FA) serve as the primary metabolic fuel during exercise and fasting, and their composition affects metabolic rate and thus energy requirements. To ascertain the relationship between FAs and metabolic rate, a distinction should be made between structural and fuel lipids. Indeed, increased unsaturation of structural lipid FAs brings about increased cell metabolism, and changes in the FA composition of fuel lipids affects metabolic rate through selective mobilization and increasing availability of specific FAs. We examined the effects of acclimation to a low ambient temperature (Ta: 12.7±3.0°C) and nutritional status (fed or unfed) on the FA composition of four tissues in Japanese quail, Coturnix japonica. Differentiating between neutral (triglycerides) and polar (phospholipids) lipids, we tested the hypothesis that both acclimation to low Ta and nutritional status modify FA composition of triglycerides and phospholipids. We found that both factors affect FA composition of triglycerides, but not the composition of phospholipids. We also found changes in liver triacylglyceride FA composition in the low-Ta acclimated quail, namely, the two FAs that differed, oleic acid (18:1) and arachidonic acid (20:4), were associated with thermoregulation. In addition, the FAs that changed with nutritional status were all reported to be involved in regulation of glucose metabolism, and thus we suggest that they also play a role in the response to fasting.


Assuntos
Coturnix/metabolismo , Ácidos Graxos/metabolismo , Desnutrição/metabolismo , Tecido Adiposo/metabolismo , Animais , Metabolismo dos Lipídeos , Desnutrição/fisiopatologia , Miocárdio/metabolismo , Especificidade de Órgãos , Fosfolipídeos/metabolismo , Estresse Fisiológico
15.
Artigo em Inglês | MEDLINE | ID: mdl-23988480

RESUMO

Many animals undergo extended periods of fasting. During these fasts, animals oxidize a ratio of macronutrients dependent on the nutritional, energetic, and hydric requirements of the fasting period. In this study, we use Japanese quail (Coturnix coturnix japonica), a bird with natural intermediate fasting periods, to examine macronutrient use during a 6d fast. We raised groups of quail on isotopically labeled materials ((13)C-1-leucine, (13)C-U-glucose, or (13)C-1-palmitic acid) with the intent of labeling specific macronutrient/tissue pools in each treatment, and then traced their use as fuels by measuring the δ(13)C values of breath CO2. Based on changes in δ(13)C values during the fast, it appears that the carbohydrate label,(13)C-U-glucose, was largely incorporated into the lipid pool and thus breath samples ultimately reflected lipid use rather than carbohydrate use. In the lipid treatment, the (13)C-1-palmitic acid faithfully labeled the lipid pool and was reflected in the kinetics δ(13)C values in breath CO2 during the fast. Endogenous lipid oxidation peaked after 24h of fasting and remained constantly elevated thereafter. The protein label,(13)C-1-leucine, showed clear diurnal periods of protein sparing and degradation, with maximal rates of protein oxidation occurring at night and the lowest rates occurring during the day time. This stable isotope tracer method provides a noninvasive approach to study the nutrient dynamics of fasting animals and should provide new insights into how different types of animals use specific nutrient pools during fasting and possibly other non-steady physiological states.


Assuntos
Coturnix/metabolismo , Jejum/fisiologia , Metabolismo dos Lipídeos , Animais , Temperatura Corporal , Isótopos de Carbono , Ritmo Circadiano , Leucina/metabolismo , Oxirredução , Ácido Palmítico/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 303(5): R551-61, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22785424

RESUMO

Many wild birds fast during reproduction, molting, migration, or because of limited food availability. Species that are adapted to fasting sequentially oxidize endogenous fuels in three discrete phases. We hypothesized that species not adapted to long fasts have truncated, but otherwise similar, phases of fasting, sequential changes in fuel oxidization, and similar changes in blood metabolites to fasting-adapted species. We tested salient predictions in house sparrows (Passer domesticus biblicus), a subspecies that is unable to tolerate more than ~32 h of fasting. Our main hypothesis was that fasting sparrows sequentially oxidize substrates in the order carbohydrates, lipids, and protein. We dosed 24 house sparrows with [(13)C]glucose, palmitic acid, or glycine and measured (13)CO(2) in their breath while they fasted for 24 h. To ascertain whether blood metabolite levels reflect fasting-induced changes in metabolic fuels, we also measured glucose, triacylglycerides, and ß-hydroxybutyrate in the birds' blood. The results of both breath (13)CO(2) and plasma metabolite analyses did not support our hypothesis; i.e., that sparrows have the same metabolic responses characteristic of fasting-adapted species, but on a shorter time scale. Contrary to our main prediction, we found that recently assimilated (13)C-tracers were oxidized continuously in different patterns with no definite peaks corresponding to the three phases of fasting and also that changes in plasma metabolite levels accurately tracked the changes found by breath analysis. Notably, the rate of recently assimilated [(13)C]glycine oxidization was significantly higher (P < 0.001) than that of the other metabolic tracers at all postdosing intervals. We conclude that the inability of house sparrows to fast for longer than 32 h is likely related to their inability to accrue large lipid stores, separately oxidize different fuels, and/or spare protein during fasting.


Assuntos
Adaptação Fisiológica/fisiologia , Jejum/fisiologia , Privação de Alimentos/fisiologia , Pardais/fisiologia , Animais , Testes Respiratórios , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Glicina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fatores de Tempo
17.
J Exp Biol ; 215(Pt 7): 1069-75, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22399651

RESUMO

During migratory flight, the mass of the gastrointestinal tract (GIT) and its associated organs in small birds decreases in size by as much as 40%, compared with the preflight condition because of the catabolism of protein. At stopover sites, birds need 2-3 days to rebuild their GIT so that they can restore body mass and fat reserves to continue migration. The source of protein used to rebuild the GIT may be exogenous (from food ingested) or endogenous (reallocated from other organs) or both. Because the relative contribution of these sources to rebuild the GIT of migratory birds is not yet known, we mimicked in-flight fasting and then re-feeding in two groups of blackcaps (Sylvia atricapilla), a Palearctic migratory passerine. The birds were fed a diet containing either 3% or 20% protein to simulate different refueling scenarios. During re-feeding, birds received known doses of (15)N-(l)-leucine before we measured the isotope concentrations in GIT and associated digestive organs and in locomotory muscles. We then quantified the extent to which blackcaps rebuilt their GIT with endogenous and/or dietary protein while refeeding after a fast. Our results indicate that blackcaps fed the low-protein diet incorporated less exogenous nitrogen into their tissues than birds fed the 20% protein diet. They also allocated relatively more exogenous protein to the GIT than to pectoral muscle than those birds re-fed with the high-protein diet. However, this compensation was not sufficient for birds eating the low-protein diet to rebuild their intestine at the same rate as the birds re-fed the high-protein diet. We concluded that blackcaps must choose stopover sites at which they can maximize protein intake to minimize the time it takes to rebuild their GIT and, thus, resume migration as soon as possible.


Assuntos
Migração Animal/fisiologia , Proteínas Alimentares/metabolismo , Trato Gastrointestinal/metabolismo , Passeriformes/fisiologia , Animais , Metabolismo Basal/fisiologia , Temperatura Corporal , Peso Corporal/fisiologia , Comportamento Alimentar/fisiologia , Isótopos de Nitrogênio , Descanso/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-20060056

RESUMO

All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.


Assuntos
Inanição/fisiopatologia , Aminoácidos/metabolismo , Animais , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Metabolismo Energético , Jejum/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos , Tamanho do Órgão/fisiologia , Proteínas/metabolismo , Fenômenos Fisiológicos Respiratórios , Redução de Peso/fisiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-20060055

RESUMO

We tested three hypotheses regarding the cues that elicit facultative hypothermia in Japanese quail (Coturnix japonica): H(1)) Ambient temperature (T(a)), alone, influences the onset and depth of hypothermia; H(2)) Fasting, alone, influences the onset and depth of hypothermia; H(3)) T(a) acts synergistically with fasting to shape the use of hypothermia. Eight quail were maintained within their thermoneutral zone (TNZ) at 32.6+/-0.2 degrees C, and eight below their lower critical temperature (T(lc)) at 12.7+/-3.0 degrees C. All quail entered hypothermia upon food deprivation, even quail kept within their TNZ. Body temperature (T(b)) decreased more (38.36+/-0.53 degrees C vs. 39.57+/-0.57 degrees C), body mass (m(b)) loss was greater (21.0+/-7.20 g vs.12.8+/-2.62g), and the energy saved by using hypothermia was greater (25.18-45.01% vs. 7.98-28.06%) in low the T(a) treatment than in TNZ treatment. Interestingly, the depth of hypothermia was positively correlated with m(b) loss in the low T(a) treatment, but not in TNZ treatment. Our data support H(3), that both thermoregulatory costs and body energy reserves are proximate cues for entry into hypothermia in quail. This outcome is not surprising below the T(lc). However, the quail kept at their TNZ also responded to food deprivation by entering hypothermia with no apparent dependence on m(b) loss. Therefore inputs, other than thermoregulatory costs and body condition, must serve as cues to enter hypothermia. Consequently, we address the role that tissue sparing may play in the physiological 'decision' to employ hypothermia.


Assuntos
Coturnix/fisiologia , Animais , Doenças das Aves/etiologia , Doenças das Aves/patologia , Doenças das Aves/fisiopatologia , Regulação da Temperatura Corporal/fisiologia , Peso Corporal , Coturnix/anatomia & histologia , Metabolismo Energético , Jejum/fisiologia , Feminino , Hipotermia/etiologia , Hipotermia/patologia , Hipotermia/fisiopatologia , Hipotermia/veterinária , Masculino , Modelos Biológicos , Temperatura
20.
Integr Zool ; 15(5): 363-374, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32306560

RESUMO

Individuals that inhabit broad elevational ranges may experience unique environmental challenges. Because temperature decreases with increased elevation, the ectotherms living at high elevations have to manage limited activity time and high thermoregulatory effort. The resting metabolic rate (RMR) of a postabsorptive animal is related to its total energy requirements as well as many other fitness traits. Mesquite lizards (Sceloporus grammicus) living on La Malinche Volcano, Mexico, inhabit a wide elevational range with some populations apparently thriving above the tree line. We measured the RMR of lizards from different elevations (i.e., 2,600, 3,200, and 4,100 m) at four ecologically relevant temperatures (i.e., 15, 25, 30, and 35 °C) and found that RMR of mesquite lizards increased with temperature and body mass. More importantly, lizards from the high-elevation population had mass specific RMR that was higher at all temperatures. While the higher RMRs of high-elevation populations imply higher metabolic costs at a given temperature these lizards were also smaller. Both of these traits may allow these high elevation populations to thrive in the face of the thermal challenges imposed by their environment.


Assuntos
Altitude , Metabolismo Basal/fisiologia , Lagartos/metabolismo , Animais , Peso Corporal , Feminino , Masculino , México , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA