RESUMO
Advances in the early diagnosis and treatment have led to increases in breast cancer survivorship. Survivors report cognitive impairment symptoms such as loss of concentration and learning and memory deficits which significantly reduce the patient's quality of life. Additional therapies are needed to prevent these side effects and, the precise mechanisms of action responsible are not fully elucidated. However, increasing evidence points toward the use of neuroprotective compounds with antioxidants and anti-inflammatory properties as tools for conserving learning and memory. Here, we examine the ability of piperlongumine (PL), an alkaloid known to have anti-inflammatory and antioxidant effects, to play a neuroprotective role in 16-week-old female C57BL/6J mice treated with a common breast cancer regimen of doxorubicin, cyclophosphamide, and docetaxel (TAC). During social memory testing, TAC-treated mice exhibited impairment, while TAC/PL co-treated mice did not exhibit measurable social memory deficits. Proteomics analysis showed ERK1/2 signaling is involved in TAC and TAC/PL co-treatment. Reduced Nrf2 mRNA expression was also observed. mRNA levels of Gria2 were increased in TAC treated mice and reduced in TAC/PL co-treated mice. In this study, PL protects against social memory impairment when co-administered with TAC via multifactorial mechanisms involving oxidative stress and synaptic plasticity.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Dioxolanos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antioxidantes/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Disfunção Cognitiva/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Chemotherapy treatment for breast cancer can induce cognitive impairments often involving oxidative stress. The brain, as a whole, is susceptible to oxidative stress due to its high-energy requirements, limited anaerobic respiration capacities, and limited antioxidant defenses. The goal of the current study was to determine if the manganese porphyrin superoxide dismutase mimetic MnTnBuOE-2-PyP (MnBuOE) could ameliorate the effects of doxorubicin, cyclophosphamide, and paclitaxel (AC-T) on mature dendrite morphology and cognitive function. METHODS: Four-month-old female C57BL/6 mice received intraperitoneal injections of chemotherapy followed by subcutaneous injections of MnBuOE. Four weeks following chemotherapy treatment, mice were tested for hippocampus-dependent cognitive performance in the Morris water maze. After testing, brains were collected for Golgi staining and molecular analyses. RESULTS: MnBuOE treatment preserved spatial memory during the Morris water-maze. MnBuOE/AC-T showed spatial memory retention during all probe trials. AC-T treatment significantly impaired spatial memory retention in the first and third probe trial (no platform). AC-T treatment decreased dendritic length in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) areas of the hippocampus while AC-T/MnBuOE maintained dendritic length. Comparative proteomic analysis revealed affected protein networks associated with cell morphology and behavior functions in both the AC-T and AC-T/MnBuOE treatment groups.
Assuntos
Cognição/efeitos dos fármacos , Ciclofosfamida/farmacologia , Doxorrubicina/farmacologia , Hipocampo/efeitos dos fármacos , Metaloporfirinas/farmacologia , Oxirredução/efeitos dos fármacos , Paclitaxel/farmacologia , Animais , Antioxidantes/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteômica/métodos , Protetores contra Radiação/farmacologia , Memória Espacial/efeitos dos fármacosRESUMO
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
RESUMO
Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.
Assuntos
Homeostase , Ferro da Dieta , Ferro , Necessidades Nutricionais , Humanos , Homeostase/fisiologia , Idoso , Ferro da Dieta/administração & dosagem , Ferro/metabolismo , Envelhecimento/fisiologia , Estado Nutricional , Anemia Ferropriva/prevenção & controle , Deficiências de Ferro , Sobrecarga de FerroRESUMO
BACKGROUND: Chat Generative Pre-trained Transformer (ChatGPT) and other ChatBots have emerged as tools for interacting with information in manners resembling natural human speech. Consequently, the technology is used across various disciplines, including business, education, and even in biomedical sciences. There is a need to better understand how ChatGPT can be used to advance gerontology research. Therefore, we evaluated ChatGPT responses to questions on specific topics in gerontology research, and brainstormed recommendations for its use in the field. METHODS: We conducted semistructured brainstorming sessions to identify uses of ChatGPT in gerontology research. We divided a team of multidisciplinary researchers into 4 topical groups: (a) gero-clinical science, (b) basic geroscience, (c) informatics as it relates to electronic health records, and (d) gero-technology. Each group prompted ChatGPT on a theory-, methods-, and interpretation-based question and rated responses for accuracy and completeness based on standardized scales. RESULTS: ChatGPT responses were rated by all groups as generally accurate. However, the completeness of responses was rated lower, except by members of the informatics group, who rated responses as highly comprehensive. CONCLUSIONS: ChatGPT accurately depicts some major concepts in gerontological research. However, researchers have an important role in critically appraising the completeness of its responses. Having a single generalized resource like ChatGPT may help summarize the preponderance of evidence in the field to identify gaps in knowledge and promote cross-disciplinary collaboration.
Assuntos
Geriatria , Humanos , Pesquisa Biomédica , IdosoRESUMO
By definition, aging is a natural, gradual and continuous process. On the other hand, frailty reflects the increase in vulnerability to stressors and shortens the time without disease (health span) while longevity refers to the length of life (lifespan). The average life expectancy has significantly increased during the last few decades. A longer lifespan has been accompanied by an increase in frailty and decreased independence in older adults, with major differences existing between men and women. For example, women tend to live longer than men but also experience higher rates of frailty and disability. Sex differences prevent optimization of lifestyle interventions and therapies to effectively prevent frailty. Sex differences in frailty and aging are rooted in a complex interplay between uncontrollable (genetic, epigenetic, physiological), and controllable factors (psychosocial and lifestyle factors). Thus, understanding the underlying causes of sex differences in frailty and aging is essential for developing personalized interventions to promote healthy aging and improve quality of life in older men and women. In this review, we have discussed the key contributors and knowledge gaps related to sex differences in aging and frailty.
Assuntos
Fragilidade , Humanos , Feminino , Masculino , Idoso , Qualidade de Vida , Caracteres Sexuais , Idoso Fragilizado , EnvelhecimentoRESUMO
Introduction: Chemotherapy-induced cognitive impairment colloquially referred to as chemobrain is a poorly understood phenomenon affecting a highly variable proportion of patients with breast cancer. Here we investigate the association between anxiety and despair-like behaviors in mice treated with cyclophosphamide, methotrexate, and fluorouracil (CMF) along with host histological, proteomic, gene expression, and gut microbial responses. Methods: Forced swim and sociability tests were used to evaluate depression and despair-like behaviors. The tandem mass tag (TMT) proteomics approach was used to assess changes in the neural protein network of the amygdala and hippocampus. The composition of gut microbiota was assessed through 16S rRNA gene sequencing. Finally, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate changes in intestinal gap junction markers. Results and discussion: We observed that CMF induced social and despair-like behavior in mice 96 hours following treatment. Proteomic analysis identified changes in various proteins related to progressive neurological disease, working memory deficit, primary anxiety disorder, and gene expression revealing increases in NMDA and AMPA receptors in both the hippocampus and the amygdala because of CMF treatment. These changes finally, we observed immediate changes in the microbial population after chemotherapy treatment, with a notable abundance of Muribaculaceae and Romboutsia which may contribute to changes seen in the gut.
RESUMO
Space exploration has advanced substantially over recent decades and plans to increase the duration of deep space missions are in preparation. One of the primary health concerns is potential damage to the central nervous system (CNS), resulting in loss of cognitive abilities and function. The majority of ground-based research on space radiation-induced health risks has been conducted using single particle simulations, which do not effectively model real-world scenarios. Thus, to improve the safety of space missions, we must expand our understanding of the effects of simulated galactic cosmic rays (GCRs) on the CNS. To assess the effects of low-dose GCR, we subjected 6-month-old male BALB/c mice to 50 cGy 5-beam simplified GCR spectrum (1H, 28Si, 4He, 16O, and 56Fe) whole-body irradiation at the NASA Space Radiation Laboratory. Animals were tested for cognitive performance with Y-maze and Morris water maze tests 3 months after irradiation. Irradiated animals had impaired short-term memory and lacked spatial memory retention on day 5 of the probe trial. Glial cell analysis by flow cytometry showed no significant changes in oligodendrocytes, astrocytes, microglia or neural precursor cells (NPC's) between the sham group and GCR group. Bone marrow cytogenetic data showed a significant increase in the frequency of chromosomal aberrations after GCR exposure. Finally, tandem mass tag proteomics identified 3,639 proteins, 113 of which were differentially expressed when comparing sham versus GCR exposure (fold change > 1.5; p < 0.05). Our data suggest exposure to low-dose GCR induces cognitive deficits by impairing short-term memory and spatial memory retention.
RESUMO
The effects of radiation in space on human cognition are a growing concern for NASA scientists and astronauts as the possibility for long-duration missions to Mars becomes more tangible. Oxygen (16O) radiation is of utmost interest considering that astronauts will interact with this radiation frequently. 16O radiation is a class of galactic cosmic ray (GCR) radiation and also present within spacecrafts. Whole-body exposure to high linear energy transfer (LET) radiation has been shown to affect hippocampal-dependent cognition. To assess the effects of high-LET radiation, we gave 6-month-old female C57BL/6 mice whole-body exposure to 16O at 0.25 or 0.1 Gy at NASA's Space Radiation Laboratory. Three months following irradiation, animals were tested for cognitive performance using the Y-maze and Novel Object Recognition paradigms. Our behavioral data shows that 16O radiation significantly impairs object memory but not spatial memory. Also, dendritic morphology characterized by the Sholl analysis showed that 16O radiation significantly decreased dendritic branch points, ends, length, and complexity in 0.1 Gy and 0.25 Gy dosages. Finally, we found no significant effect of radiation on single nucleotide polymorphisms in hippocampal genes related to oxidative stress, inflammation, and immediate early genes. Our data suggest exposure to heavy ion 16O radiation modulates hippocampal neurons and induces behavioral deficits at a time point of three months after exposure in female mice.
Assuntos
Disfunção Cognitiva/etiologia , Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Aprendizagem em Labirinto/efeitos da radiação , Oxigênio/efeitos adversos , Reconhecimento Psicológico/efeitos da radiação , Memória Espacial/efeitos da radiação , Animais , Comportamento Animal/efeitos da radiação , Disfunção Cognitiva/fisiopatologia , Feminino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
This neural dissociation protocol (an adaptation of the protocol accompanying a commercial adult brain dissociation kit) optimizes tissue processing in preparation for detailed downstream analysis such as flow cytometry or single-cell sequencing. Neural dissociation can be conducted via mechanical dissociation (such as using filters, chopping techniques, or pipette trituration), enzymatic digestion, or a combination thereof. The delicate nature of neuronal cells can complicate efforts to obtain the highly viable, true single-cell suspension with minimal cellular debris that is required for single-cell analysis. The data demonstrate that this combination of automated mechanical dissociation and enzymatic digestion consistently yields a highly viable (>90%) single-cell suspension, overcoming the aforementioned difficulties. While a few of the steps require manual dexterity, these steps lessen sample handling and potential cell loss. This manuscript details each step of the process to equip other laboratories to successfully dissociate small quantities of neural tissue in preparation for downstream analysis.
Assuntos
Encéfalo , Hipocampo , Animais , Separação Celular/métodos , Citometria de Fluxo/métodos , Camundongos , NeurôniosRESUMO
Breast cancer is the most commonly diagnosed cancer among women and it is estimated that about 30% of newly diagnosed cancers in women will be breast cancers. While advancements in treating breast cancer have led to an average 5-year survival rate of 90%, many survivors experience cognitive impairments as a result of chemotherapy treatment. Doxorubicin, cyclophosphamide, and docetaxel (TAC) are commonly administered as breast cancer treatments; however, there are few studies that have tested the cognitive effects of TAC. In the current study, 12-week-old female C57BL/6 mice received 4 weekly intraperitoneal injections of either saline or a combination therapy of doxorubicin and cyclophosphamide followed by 4 weekly docetaxel injections. Four weeks after the last injection, mice were tested for hippocampus-dependent cognitive performance in the Y-maze and the Morris water maze. During Y-maze testing, mice exposed to TAC exhibited impairment. During the water maze assessment, all animals were able to locate the visible and hidden platform locations. However, mice that received the TAC presented with a significant impairment in spatial memory retention on the probe trial days. TAC treatment significantly decreases the dendritic complexity of arborization in the dentate gyrus region of the hippocampus. In addition, comparative proteomic analysis revealed downregulation of proteins within key metabolic and signaling pathways associated with cognitive dysfunction, such as oxidative phosphorylation, ephrin signaling, and calcium signaling.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Disfunção Cognitiva/induzido quimicamente , Ciclofosfamida/toxicidade , Docetaxel/toxicidade , Doxorrubicina/toxicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Bisphenol A (BPA) is a chemical compound commonly used in the production of plastics for daily lives and industry. As BPA is well known for its adverse health effects, several alternative materials have been developed. This study comprehensively analyzed the toxicity of BPA and its three substitutes including bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF) on aging, healthspan, and mitochondria using an in vivo Caenorhabditis elegans (C. elegans) model animal and cultured mammalian fibroblast cells. C. elegans treated with 1 mM BPA exhibited abnormalities in the four tested parameters related to development and growth, including delayed development, decreased body growth, reduced reproduction, and abnormal tissue morphology. Exposure to the same concentration of each alternative including TMBPF, which has been proposed as a relatively safe BPA alternative, detrimentally affected at least three of these events. Moreover, all bisphenols (except BPS) remarkably shortened the organismal lifespan and increased age-related changes in neurons. Exposure to BPA and BPF resulted in mitochondrial abnormalities, such as reduced oxygen consumption and mitochondrial membrane potential. In contrast, the ATP levels were noticeably higher after treatment with all bisphenols. In mammalian fibroblast cells, exposure to increasing concentrations of all bisphenols (ranging from 50 µM to 500 µM) caused a severe decrease in cell viability in a dose-dependent manner. BPA increased ATP levels and decreased ROS but did not affect mitochondrial permeability transition pores (mPTP). Notably, TMBPF was the only bisphenol that caused a significant increase in mitochondrial ROS and mPTP opening. These results suggest that the potentially harmful physiological effects of BPA alternatives should be considered.
Assuntos
Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Fibroblastos/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Compostos Benzidrílicos/administração & dosagem , Compostos Benzidrílicos/química , Caenorhabditis elegans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Fibroblastos/citologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fenóis/administração & dosagem , Fenóis/química , Espécies Reativas de Oxigênio/metabolismo , Sulfonas/administração & dosagem , Sulfonas/químicaRESUMO
Oxidative stress is considered one of the possible mechanisms behind chemobrain or the cognitive dysfunction persistent after chemotherapy treatment. Breast cancer patients have reported chemobrain symptoms since the 1990s. In this present bibliometric review, we employed the VOSviewer tool to describe the existing landscape on literature concerning oxidative stress, breast cancer chemotherapies, and chemobrain. As of 2019, 8799 papers were listed in the Web of Science database, with more than 900 papers published each year. As expected, terms relating to oxidative stress, mitochondria, breast cancer, and antioxidants have occurred very often in the literature throughout the years. In recent years, there has been an increase in the occurrence of terms related to nanomedicine. Only within the last decade do the keywords 'brain', 'blood-brain barrier', and 'central nervous system' appear, reflecting an increased interest in chemobrain. China has become the most prolific producer of oxidative stress and chemotherapy related papers in the last decade followed by the USA and India. In conclusion, the subject of oxidative stress as a mechanism behind chemotherapies' toxicities is an active area of research.
RESUMO
Artificial extracellular matrices (aECMs) are an extension of biomaterials that were developed as in-vitro model environments for tissue cells that mimic the native in vivo target tissues' structure. This bibliometric analysis evaluated the research productivity regarding aECM based on tissue engineering technology. The Web of Science citation index was examined for articles published from 1990 through 2019 using three distinct aECMrelated topic sets. Data were also visualized using network analyses (VOSviewer). Terms related to in-vitro, scaffolds, collagen, hydrogels, and differentiation were reoccurring in the aECMrelated literature over time. Publications with terms related to a clinical direction (wound healing, stem cells, artificial skin, invivo, and bone regeneration) have steadily increased, as have the number of countries and institutions involved in the artificial extracellular matrix. As progress with 3D scaffolds continues to advance, it will become the most promising technology to provide a therapeutic option to repair or replace damaged tissue.
RESUMO
Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1ß, IL-3, IL-10, and TNF-α levels.
Assuntos
Ciclofosfamida/toxicidade , Fluoruracila/toxicidade , Hipocampo/efeitos dos fármacos , Metotrexato/toxicidade , Neurônios/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Região CA1 Hipocampal , Quimioterapia Adjuvante , Dendritos , Espinhas Dendríticas , Modelos Animais de Doenças , Feminino , Camundongos , Qualidade de VidaRESUMO
The space extending beyond Earth's magnetosphere is subject to a complex field of high-energy charged nuclei, which are capable of traversing spacecraft shielding and human tissues, inducing dense ionization events. The central nervous system is a major area of concern for astronauts who will be exposed to the deep-space radiation environment on a mission to Mars, as charged-particle radiation has been shown to elicit changes to the dendritic arbor within the hippocampus of rodents, and related cognitive-behavioral deficits. We exposed 6-month-old male mice to whole-body 1H (0.5 Gy; 150 MeV/n; 18-19 cGy/minute) and an hour later to 16O (0.1Gy; 600 MeV/n; 18-33 Gy/min) at NASA's Space Radiation Laboratory as a galactic cosmic ray-relevant model. Animals were housed with bedding which provides cognitive enrichment. Mice were tested for cognitive behavior 9 months after exposure to elucidate late radiation effects. Radiation induced significant deficits in novel object recognition and short-term spatial memory (Y-maze). Additionally, we observed opposing morphological differences between the mature granular and pyramidal neurons throughout the hippocampus, with increased dendritic length in the dorsal dentate gyrus and reduced length and complexity in the CA1 subregion of the hippocampus. Dendritic spine analyses revealed a severe reduction in mushroom spine density throughout the hippocampus of irradiated animals. Finally, we detected no general effect of radiation on single-nucleotide polymorphisms in immediate early genes, and genes involved in inflammation but found a higher variant allele frequency in the antioxidants thioredoxin reductase 2 and 3 loci.
RESUMO
Cranial and craniospinal irradiation are the oldest central nervous system prophylaxis treatments considered for pediatric patients with acute lymphoblastic leukemia (ALL). However, survivors of childhood ALL that received cranial radiotherapy are at increased risk for deficits in neurocognitive skills. The continuous and dynamic response of normal tissue after irradiation has been identified as one of the causative factors for cognitive changes after cranial radiation therapy. The aim of our study was to investigate the radiation effects on social behavior and neuronal morphology in the hippocampus of adult mice. Twenty-oneday-old male C57BL/6 mice were irradiated with the small-animal radiation research platform (SARRP). Animals were given a single 10-Gy dose of radiation of X-ray cranial radiation. One month following irradiation, animals underwent behavioral testing in the Three-Chamber Sociability paradigm. Radiation affected social discrimination during the third stage eliciting an inability to discriminate between the familiar and stranger mouse, while sham successfully spent more time exploring the novel stranger. Proteomic analysis revealed dysregulation of metabolic and signaling pathways associated with neurocognitive dysfunction such as mitochondrial dysfunction, Rac 1 signaling, and synaptogenesis signaling. We observed significant decreases in mushroom spine density in the Cornu Ammonis 2 of the hippocampus, which is associated with sociability processing.
Assuntos
Comportamento Animal/efeitos da radiação , Irradiação Craniana , Hipocampo/efeitos da radiação , Memória/efeitos da radiação , Comportamento Social , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/efeitos da radiação , Hipocampo/metabolismo , Masculino , Camundongos , Neurogênese/efeitos da radiação , Proteômica , Transdução de Sinais/efeitos da radiação , Sirtuínas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
BACKGROUND: Resistant starch is a prebiotic metabolized by the gut bacteria. It has been shown to attenuate chronic kidney disease (CKD) progression in rats. Previous studies employed taxonomic analysis using 16S rRNA sequencing and untargeted metabolomics profiling. Here we expand these studies by metaproteomics, gaining new insight into the host-microbiome interaction. METHODS: Differences between cecum contents in CKD rats fed a diet containing resistant starch with those fed a diet containing digestible starch were examined by comparative metaproteomics analysis. Taxonomic information was obtained using unique protein sequences. Our methodology results in quantitative data covering both host and bacterial proteins. RESULTS: 5,834 proteins were quantified, with 947 proteins originating from the host organism. Taxonomic information derived from metaproteomics data surpassed previous 16S RNA analysis, and reached species resolutions for moderately abundant taxonomic groups. In particular, the Ruminococcaceae family becomes well resolved-with butyrate producers and amylolytic species such as R. bromii clearly visible and significantly higher while fibrolytic species such as R. flavefaciens are significantly lower with resistant starch feeding. The observed changes in protein patterns are consistent with fiber-associated improvement in CKD phenotype. Several known host CKD-associated proteins and biomarkers of impaired kidney function were significantly reduced with resistant starch supplementation. Data are available via ProteomeXchange with identifier PXD008845. CONCLUSIONS: Metaproteomics analysis of cecum contents of CKD rats with and without resistant starch supplementation reveals changes within gut microbiota at unprecedented resolution, providing both functional and taxonomic information. Proteins and organisms differentially abundant with RS supplementation point toward a shift from mucin degraders to butyrate producers.