Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7837): 267-271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208939

RESUMO

Recent analyses have reported catastrophic global declines in vertebrate populations1,2. However, the distillation of many trends into a global mean index obscures the variation that can inform conservation measures and can be sensitive to analytical decisions. For example, previous analyses have estimated a mean vertebrate decline of more than 50% since 1970 (Living Planet Index2). Here we show, however, that this estimate is driven by less than 3% of vertebrate populations; if these extremely declining populations are excluded, the global trend switches to an increase. The sensitivity of global mean trends to outliers suggests that more informative indices are needed. We propose an alternative approach, which identifies clusters of extreme decline (or increase) that differ statistically from the majority of population trends. We show that, of taxonomic-geographic systems in the Living Planet Index, 16 systems contain clusters of extreme decline (comprising around 1% of populations; these extreme declines occur disproportionately in larger animals) and 7 contain extreme increases (around 0.4% of populations). The remaining 98.6% of populations across all systems showed no mean global trend. However, when analysed separately, three systems were declining strongly with high certainty (all in the Indo-Pacific region) and seven were declining strongly but with less certainty (mostly reptile and amphibian groups). Accounting for extreme clusters fundamentally alters the interpretation of global vertebrate trends and should be used to help to prioritize conservation efforts.


Assuntos
Biodiversidade , Mapeamento Geográfico , Vertebrados , Anfíbios/classificação , Animais , Conservação dos Recursos Naturais , Internacionalidade , Dinâmica Populacional , Répteis/classificação , Vertebrados/classificação
2.
Nature ; 610(7932): 457-458, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224364
7.
Glob Chang Biol ; 28(1): 46-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669982

RESUMO

The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.


Assuntos
Biodiversidade , Peixes , Animais , Ecossistema , Plantas
9.
Nature ; 529(7584): 80-3, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26675730

RESUMO

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.


Assuntos
Agricultura/história , Ecossistema , Atividades Humanas/história , Fenômenos Fisiológicos Vegetais , Animais , História Antiga , Humanos , América do Norte , Dinâmica Populacional , Fatores de Tempo
10.
Ecol Lett ; 24(9): 1988-2009, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015168

RESUMO

Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Fenótipo , Projetos de Pesquisa
11.
Ecol Appl ; 31(2): e02239, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33074572

RESUMO

While invasive plant distributions are relatively well known in the eastern United States, temporal changes in species distributions and interactions among species have received little attention. Managers are therefore left to make management decisions without knowing which species pose the greatest threats based on their ability to spread, persist and outcompete other invasive species. To fill this gap, we used the U.S. National Park Service's Inventory and Monitoring Program data collected from over 1,400 permanent forest plots spanning 12 yr and covering 39 eastern national parks to analyze invasive plant trends. We analyzed trends in abundance at multiple scales, including plot frequency, quadrat frequency, and average quadrat cover. We examined trends overall, by functional group, and by species. We detected considerably more increasing than decreasing trends in invasive plant abundance. In fact, 80% of the parks in our study had at least one significant increasing trend in invasive abundance over time. Where detected, significant negative trends tended to be herbaceous or graminoid species. However, these declines were often countered by roughly equivalent increases in invasive shrubs over the same time period, and we only detected overall declines in invasive abundance in two parks in our study. Present in over 30% of plots and responsible for the steepest and greatest number of significant increases, Japanese stiltgrass (Microstegium vimineum) was the most aggressive invader in our study and is a high management priority. Invasive shrubs, especially Japanese barberry (Berberis thunbergii), Japanese honeysuckle (Lonicera japonica), multiflora rose (Rosa multiflora), and wineberry (Rubus phoenicolasius), also increased across multiple parks, and sometimes at the expense of Japanese stiltgrass. Given the added risks to human health from tick-borne diseases, invasive shrubs are a high management priority. While these findings provide critical information to managers for species prioritization, they also demonstrate the incredible management challenge that invasive plants pose in protected areas, particularly since we documented few overall declines in invasive abundance. As parks work to overcome deferred maintenance of infrastructure, our findings suggest that deferred management of natural resources, particularly invasive species, requires similar attention and long-term commitment to reverse these widespread increasing invasive trends.


Assuntos
Ecossistema , Parques Recreativos , Humanos , Espécies Introduzidas , Plantas , Poaceae , Estados Unidos
12.
Ecol Lett ; 22(5): 847-854, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30874368

RESUMO

Scientists disagree about the nature of biodiversity change. While there is evidence for widespread declines from population surveys, assemblage surveys reveal a mix of declines and increases. These conflicting conclusions may be caused by the use of different metrics: assemblage metrics may average out drastic changes in individual populations. Alternatively, differences may arise from data sources: populations monitored individually, versus whole-assemblage monitoring. To test these hypotheses, we estimated population change metrics using assemblage data. For a set of 23 241 populations, 16 009 species, in 158 assemblages, we detected significantly accelerating extinction and colonisation rates, with both rates being approximately balanced. Most populations (85%) did not show significant trends in abundance, and those that did were balanced between winners (8%) and losers (7%). Thus, population metrics estimated with assemblage data are commensurate with assemblage metrics and reveal sustained and increasing species turnover.


Assuntos
Biodiversidade , Dinâmica Populacional
13.
Ecol Lett ; 21(11): 1737-1751, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30182500

RESUMO

Because biodiversity is multidimensional and scale-dependent, it is challenging to estimate its change. However, it is unclear (1) how much scale-dependence matters for empirical studies, and (2) if it does matter, how exactly we should quantify biodiversity change. To address the first question, we analysed studies with comparisons among multiple assemblages, and found that rarefaction curves frequently crossed, implying reversals in the ranking of species richness across spatial scales. Moreover, the most frequently measured aspect of diversity - species richness - was poorly correlated with other measures of diversity. Second, we collated studies that included spatial scale in their estimates of biodiversity change in response to ecological drivers and found frequent and strong scale-dependence, including nearly 10% of studies which showed that biodiversity changes switched directions across scales. Having established the complexity of empirical biodiversity comparisons, we describe a synthesis of methods based on rarefaction curves that allow more explicit analyses of spatial and sampling effects on biodiversity comparisons. We use a case study of nutrient additions in experimental ponds to illustrate how this multi-dimensional and multi-scale perspective informs the responses of biodiversity to ecological drivers.


Assuntos
Biodiversidade , Ecologia
14.
Am J Bot ; 105(9): 1477-1490, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30216410

RESUMO

PREMISE OF THE STUDY: General relationships among functional traits have been identified across species, but the forces shaping these relationships remain largely unknown. Adopting an approach from evolutionary biology, we studied similarities and differences in intrapopulation trait correlations among locally co-occurring tree species to assess the roles of constraints, phylogeny, and the environmental niche in shaping multivariate phenotypes. We tested the hypotheses (1) that intrapopulation correlations among functional traits are largely shaped by fundamental trade-offs or constraints and (2) that differences among species reflect adaptation to their environmental niches. METHODS: We compared pairwise correlations and correlation matrices of 17 key functional traits within and among temperate tree species. These traits describe three well-established trade-off dimensions characterizing interspecific relationships among physiological functions: resource acquisition and conservation; sap transport and mechanical support; and branch architecture. KEY RESULTS: Six trait pairs are consistently correlated within populations. Of these, only one involves dimensionally independent traits: LMA-δ13 C. For all other traits, intrapopulation functional trait correlations are weak, are species-specific, and differ from interspecific correlations. Species intrapopulation correlation matrices are related to neither phylogeny nor environmental niche. CONCLUSIONS: The results (1) suggest that the functional design of these species is centered on efficient water use, (2) highlight flexibility in plant functional design across species, and (3) suggest that intrapopulation, local interspecific, and global interspecific correlations are shaped by processes acting at each of these scales.


Assuntos
Ecossistema , Árvores , Meio Ambiente , Filogenia , Característica Quantitativa Herdável , Árvores/anatomia & histologia , Árvores/genética , Árvores/fisiologia , Água/metabolismo
15.
Ecol Lett ; 20(3): 293-306, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28145038

RESUMO

The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state.


Assuntos
Biota , Mudança Climática , Ecologia/métodos , Modelos Biológicos , Dinâmica Populacional
16.
Ecol Lett ; 20(8): 969-980, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28609810

RESUMO

Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerability pathway). While a range of demographic strategies occur within species' climatic niches, demographic strategies are more constrained in climates predicted to be less suitable.


Assuntos
Mudança Climática , Plantas , Demografia
17.
Ecology ; 98(2): 583-590, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864922

RESUMO

We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation.


Assuntos
Biodiversidade , Ecologia , Incerteza
18.
Conserv Biol ; 31(1): 172-182, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27542096

RESUMO

Coastal marshes are one of the world's most productive ecosystems. Consequently, they have been heavily used by humans for centuries, resulting in ecosystem loss. Direct human modifications such as road crossings and ditches and climatic stressors such as sea-level rise and extreme storm events have the potential to further degrade the quantity and quality of marsh along coastlines. We used an 18-year marsh-bird database to generate population trends for 5 avian species (Rallus crepitans, Tringa semipalmata semipalmata, Ammodramus nelsonii subvirgatus, Ammodramus caudacutus, and Ammodramus maritimus) that breed almost exclusively in tidal marshes, and are potentially vulnerable to marsh degradation and loss as a result of anthropogenic change. We generated community and species trends across 3 spatial scales and explored possible drivers of the changes we observed, including marsh ditching, tidal restriction through road crossings, local rates of sea-level rise, and potential for extreme flooding events. The specialist community showed negative trends in tidally restricted marshes (-2.4% annually from 1998 to 2012) but was stable in unrestricted marshes across the same period. At the species level, we found negative population trends in 3 of the 5 specialist species, ranging from -4.2% to 9.0% annually. We suggest that tidal restriction may accelerate degradation of tidal marsh resilience to sea-level rise by limiting sediment supply necessary for marsh accretion, resulting in specialist habitat loss in tidally restricted marshes. Based on our findings, we predict a collapse of the global population of Saltmarsh Sparrows (A. caudacutus) within the next 50 years and suggest that immediate conservation action is needed to prevent extinction of this species. We also suggest mitigation actions to restore sediment supply to coastal marshes to help sustain this ecosystem into the future.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Animais , Ecossistema , Inundações , Humanos , Pardais , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA