Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 13(12): e1007112, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29227993

RESUMO

Integrated development of diverse tissues gives rise to a functional, mobile vertebrate musculoskeletal system. However, the genetics and cellular interactions that drive the integration of muscle, tendon, and skeleton are poorly understood. In the vertebrate head, neural crest cells, from which cranial tendons derive, pattern developing muscles just as tendons have been shown to in limb and trunk tissue, yet the mechanisms of this patterning are unknown. From a forward genetic screen, we determined that cyp26b1 is critical for musculoskeletal integration in the ventral pharyngeal arches, particularly in the mandibulohyoid junction where first and second arch muscles interconnect. Using time-lapse confocal analyses, we detail musculoskeletal integration in wild-type and cyp26b1 mutant zebrafish. In wild-type fish, tenoblasts are present in apposition to elongating muscles and condense in discrete muscle attachment sites. In the absence of cyp26b1, tenoblasts are generated in normal numbers but fail to condense into nascent tendons within the ventral arches and, subsequently, muscles project into ectopic locales. These ectopic muscle fibers eventually associate with ectopic tendon marker expression. Genetic mosaic analysis demonstrates that neural crest cells require Cyp26b1 function for proper musculoskeletal development. Using an inhibitor, we find that Cyp26 function is required in a short time window that overlaps the dynamic window of tenoblast condensation. However, cyp26b1 expression is largely restricted to regions between tenoblast condensations during this time. Our results suggest that degradation of RA by this previously undescribed population of neural crest cells is critical to promote condensation of adjacent scxa-expressing tenoblasts and that these condensations are subsequently required for proper musculoskeletal integration.


Assuntos
Desenvolvimento Embrionário/genética , Desenvolvimento Maxilofacial/genética , Morfogênese/genética , Ácido Retinoico 4 Hidroxilase/genética , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Arcada Osseodentária/embriologia , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Tendões/embriologia , Tendões/crescimento & desenvolvimento , Peixe-Zebra/embriologia , Peixe-Zebra/genética
2.
J Vis Exp ; (83): e51190, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24514435

RESUMO

Time-lapse imaging is a technique that allows for the direct observation of the process of morphogenesis, or the generation of shape. Due to their optical clarity and amenability to genetic manipulation, the zebrafish embryo has become a popular model organism with which to perform time-lapse analysis of morphogenesis in living embryos. Confocal imaging of a live zebrafish embryo requires that a tissue of interest is persistently labeled with a fluorescent marker, such as a transgene or injected dye. The process demands that the embryo is anesthetized and held in place in such a way that healthy development proceeds normally. Parameters for imaging must be set to account for three-dimensional growth and to balance the demands of resolving individual cells while getting quick snapshots of development. Our results demonstrate the ability to perform long-term in vivo imaging of fluorescence-labeled zebrafish embryos and to detect varied tissue behaviors in the cranial neural crest that cause craniofacial abnormalities. Developmental delays caused by anesthesia and mounting are minimal, and embryos are unharmed by the process. Time-lapse imaged embryos can be returned to liquid medium and subsequently imaged or fixed at later points in development. With an increasing abundance of transgenic zebrafish lines and well-characterized fate mapping and transplantation techniques, imaging any desired tissue is possible. As such, time-lapse in vivo imaging combines powerfully with zebrafish genetic methods, including analyses of mutant and microinjected embryos.


Assuntos
Ossos Faciais/embriologia , Microscopia Confocal/métodos , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Anormalidades Craniofaciais/genética , Morfogênese/genética , Morfogênese/fisiologia , Crista Neural/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptores Acoplados a Proteínas G/genética , Proteína Smad5/genética , Imagem com Lapso de Tempo/métodos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA