Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(1): 48-58, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934672

RESUMO

Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.


Assuntos
Enfisema , Linfadenopatia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/genética , Proteômica , Perfilação da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38064378

RESUMO

RATIONALE: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. OBJECTIVE: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and COPD patients with varying degrees of emphysema. METHODS: Lung sections from 40 COPD patients and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin and OCT-fixed lung samples obtained from biopsies or lung explants, were assessed for LF presence. Emphysema measurements were obtained from clinical chest CT scans. High confidence transcriptional (HCT) target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. MEASUREMENTS AND MAIN RESULTS: Overall, 115 LFs from ever-smokers and GOLD 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell markers genes in subjects with severe emphysema. HCT analysis revealed activation of abnormal B cell activity signature in LFs (q-value: 2.56E-111). LFs from GOLD 1-2 COPD patients with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from GOLD 1-2 COPD patients without emphysema showed an anti-inflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed towards chronic B cell activation. CONCLUSIONS: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.

6.
J Biomed Inform ; 71: 49-57, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28501646

RESUMO

The volume and diversity of data in biomedical research have been rapidly increasing in recent years. While such data hold significant promise for accelerating discovery, their use entails many challenges including: the need for adequate computational infrastructure, secure processes for data sharing and access, tools that allow researchers to find and integrate diverse datasets, and standardized methods of analysis. These are just some elements of a complex ecosystem that needs to be built to support the rapid accumulation of these data. The NIH Big Data to Knowledge (BD2K) initiative aims to facilitate digitally enabled biomedical research. Within the BD2K framework, the Commons initiative is intended to establish a virtual environment that will facilitate the use, interoperability, and discoverability of shared digital objects used for research. The BD2K Commons Framework Pilots Working Group (CFPWG) was established to clarify goals and work on pilot projects that address existing gaps toward realizing the vision of the BD2K Commons. This report reviews highlights from a two-day meeting involving the BD2K CFPWG to provide insights on trends and considerations in advancing Big Data science for biomedical research in the United States.


Assuntos
Conjuntos de Dados como Assunto , Disseminação de Informação , National Institutes of Health (U.S.) , Pesquisa Biomédica , Humanos , Conhecimento , Pesquisa Translacional Biomédica , Estados Unidos
7.
Mol Pharmacol ; 90(2): 153-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27216565

RESUMO

Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research.


Assuntos
Pesquisa Biomédica , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Genômica , Humanos , Ligantes , Modelos Biológicos
8.
Epigenetics Chromatin ; 17(1): 12, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678237

RESUMO

BACKGROUND: Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses of RNA-Seq data uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. RESULTS: Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression datasets suggest a role for epigenetic modification of DNA in regulation of gene expression in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. CONCLUSIONS: Our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.


Assuntos
Tecido Adiposo Marrom , Resposta ao Choque Frio , Metilação de DNA , Epigênese Genética , Histonas , Camundongos Endogâmicos C57BL , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos , Masculino , Histonas/metabolismo , Código das Histonas , Termogênese , Temperatura Baixa
9.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328142

RESUMO

Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28.8°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression data suggest a role for epigenetic modification of DNA in gene regulation in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. Taken together, our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.

10.
bioRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38826218

RESUMO

Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.

11.
J Biol Chem ; 287(45): 37926-38, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988238

RESUMO

Testis differentiation in zebrafish involves juvenile ovary to testis transformation initiated by an apoptotic wave. The molecular regulation of this transformation process is not fully understood. NF-κB is activated at an early stage of development and has been shown to interact with steroidogenic factor-1 in mammals, leading to the suppression of anti-Müllerian hormone (Amh) gene expression. Because steroidogenic factor-1 and Amh are important for proper testis development, NF-κB-mediated induction of anti-apoptotic genes could, therefore, also play a role in zebrafish gonad differentiation. The aim of this study was to examine the potential role of NF-κB in zebrafish gonad differentiation. Exposure of juvenile zebrafish to heat-killed Escherichia coli activated the NF-κB pathways and resulted in an increased ratio of females from 30 to 85%. Microarray and quantitative real-time-PCR analysis of gonads showed elevated expression of NF-κB-regulated genes. To confirm the involvement of NF-κB-induced anti-apoptotic effects, zebrafish were treated with sodium deoxycholate, a known inducer of NF-κB or NF-κB activation inhibitor (NAI). Sodium deoxycholate treatment mimicked the effect of heat-killed bacteria and resulted in an increased proportion of females from 25 to 45%, whereas the inhibition of NF-κB using NAI resulted in a decrease in females from 45 to 20%. This study provides proof for an essential role of NF-κB in gonadal differentiation of zebrafish and represents an important step toward the complete understanding of the complicated process of sex differentiation in this species and possibly other cyprinid teleosts as well.


Assuntos
NF-kappa B/metabolismo , Ovário/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular , Ácido Desoxicólico/farmacologia , Escherichia coli/imunologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Temperatura Alta , Masculino , Modelos Genéticos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testículo/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
12.
Biochem Biophys Res Commun ; 434(2): 357-62, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23567971

RESUMO

Androgens regulate body composition by interacting with the androgen receptor (AR) to control gene expression in a tissue-specific manner. To identify novel regulatory roles for AR in preadipocytes, we created a 3T3-L1 cell line stably expressing human AR. We found AR expression is required for androgen-mediated inhibition of 3T3-L1 adipogenesis. This inhibition is characterized by decreased lipid accumulation, reduced expression of adipogenic genes, and induction of genes associated with osteoblast differentiation. Collectively, our results suggest androgens promote an osteogenic gene program at the expense of adipocyte differentiation.


Assuntos
Adipócitos/citologia , Adipogenia , Androgênios/metabolismo , Osteogênese , Receptores Androgênicos/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Androgênios/genética , Animais , Biomarcadores/metabolismo , Western Blotting , Regulação da Expressão Gênica , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Metribolona/farmacologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais , Congêneres da Testosterona/farmacologia , Transcriptoma , Transgenes
13.
J Invest Dermatol ; 143(9): 1689-1699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36967086

RESUMO

Unbiased informatics approaches have the potential to generate insights into uncharacterized signaling pathways in human disease. In this study, we generated longitudinal transcriptomic profiles of plaque psoriasis lesions from patients enrolled in a clinical trial of the anti-IL17A antibody ixekizumab (IXE). This dataset was then computed against a curated matrix of over 700 million data points derived from published psoriasis and signaling node perturbation transcriptomic and chromatin immunoprecipitation-sequencing datasets. We observed substantive enrichment within both psoriasis-induced and IXE-repressed gene sets of transcriptional targets of members of the MuvB complex, a master regulator of the mitotic cell cycle. These gene sets were similarly enriched for pathways involved in the regulation of the G2/M transition of the cell cycle. Moreover, transcriptional targets for MuvB nodes were strongly enriched within IXE-repressed genes whose expression levels correlated strongly with the extent and severity of the psoriatic disease. In models of human keratinocyte proliferation, genes encoding MuvB nodes were transcriptionally repressed by IXE, and depletion of MuvB nodes reduced cell proliferation. Finally, we made the expression and regulatory networks that supported this study available as a freely accessible, cloud-based hypothesis generation platform. Our study positions inhibition of MuvB signaling as an important determinant of the therapeutic impact of IXE in psoriasis.


Assuntos
Fármacos Dermatológicos , Psoríase , Humanos , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/uso terapêutico , Método Duplo-Cego , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/patologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Resultado do Tratamento
14.
Sci Transl Med ; 15(713): eade2581, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703351

RESUMO

Sarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease. Positive treatment outcomes were dependent on the effective enhancement of TBET ubiquitination within CD8+ T cells. Mechanistically, we identified a posttranslational modification pathway in which the E3 F-box protein S-phase kinase-associated protein 2 (SKP2) targets TBET for ubiquitination in T cells under normal conditions. However, this pathway was disrupted by aberrant pSHP2 signaling in CD8+ T cells from patients with progressive pulmonary sarcoidosis and end-stage disease. Ex vivo inhibition of pSHP2 in CD8+ T cells from patients with end-stage sarcoidosis enhanced TBET ubiquitination and suppressed IFN-γ and collagen synthesis. Therefore, these studies provided new mechanistic insights into the SHP2-dependent posttranslational regulation of TBET and identified SHP2 inhibition as a potential therapeutic intervention against severe sarcoidosis. Furthermore, these studies also suggest that the small-molecule SHP2 inhibitor SHP099 might be used as a therapeutic measure against human diseases linked to TBET or ubiquitination.


Assuntos
Linfócitos T CD8-Positivos , Sarcoidose , Humanos , Animais , Camundongos , Ubiquitinação , Processamento de Proteína Pós-Traducional , Interferon gama
15.
Elife ; 122023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417957

RESUMO

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Assuntos
Glucose , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Glucose/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Jejum/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Flavoproteínas/metabolismo
16.
Physiol Genomics ; 44(17): 853-63, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22786849

RESUMO

The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities.


Assuntos
Bases de Dados Genéticas , Internet , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/genética , Software , Transcriptoma/genética , Animais , Diferenciação Celular/fisiologia , Primers do DNA/genética , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Ratos , Reação em Cadeia da Polimerase em Tempo Real
17.
Biochim Biophys Acta ; 1812(8): 808-17, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21029773

RESUMO

Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high-content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high-content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Assuntos
Biologia Computacional , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Perfilação da Expressão Gênica , Genômica , Humanos , Metabolômica , Proteômica
18.
iScience ; 25(7): 104581, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35832893

RESUMO

Investigator-generated transcriptomic datasets interrogating circulating immune cell (CIC) gene expression in clinical type 1 diabetes (T1D) have underappreciated re-use value. Here, we repurposed these datasets to create an open science environment for the generation of hypotheses around CIC signaling pathways whose gain or loss of function contributes to T1D pathogenesis. We firstly computed sets of genes that were preferentially induced or repressed in T1D CICs and validated these against community benchmarks. We then inferred and validated signaling node networks regulating expression of these gene sets, as well as differentially expressed genes in the original underlying T1D case:control datasets. In a set of three use cases, we demonstrated how informed integration of these networks with complementary digital resources supports substantive, actionable hypotheses around signaling pathway dysfunction in T1D CICs. Finally, we developed a federated, cloud-based web resource that exposes the entire data matrix for unrestricted access and re-use by the research community.

19.
Transl Psychiatry ; 11(1): 405, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294678

RESUMO

Although antipsychotics, such as olanzapine, are effective in the management of psychiatric conditions, some patients experience excessive antipsychotic-induced weight gain (AIWG). To illuminate pathways underlying AIWG, we compared baseline blood gene expression profiles in two cohorts of mice that were either prone (AIWG-P) or resistant (AIWG-R) to weight gain in response to olanzapine treatment for two weeks. We found that transcripts elevated in AIWG-P mice relative to AIWG-R are enriched for high-confidence transcriptional targets of numerous inflammatory and immunomodulatory signaling nodes. Moreover, these nodes are themselves enriched for genes whose disruption in mice is associated with reduced body fat mass and slow postnatal weight gain. In addition, we identified gene expression profiles in common between our mouse AIWG-P gene set and an existing human AIWG-P gene set whose regulation by immunomodulatory transcription factors is highly conserved between species. Finally, we identified striking convergence between mouse AIWG-P transcriptional regulatory networks and those associated with body weight and body mass index in humans. We propose that immunomodulatory transcriptional networks drive AIWG, and that these networks have broader conserved roles in whole body-metabolism.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Antipsicóticos/toxicidade , Redes Reguladoras de Genes , Humanos , Camundongos , Olanzapina , Esquizofrenia/tratamento farmacológico , Aumento de Peso
20.
Front Aging ; 2: 803482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35822007

RESUMO

Objective: Although PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.1 in the development of the age-associated metabolic syndrome. Methods: We generated mice with adipocyte-specific PU.1 knockout, assessed metabolic changes in young and older adult PU.1fl/fl (control) and AdipoqCre PU.1fl/fl (aPU.1KO) mice, including body weight, body composition, energy expenditure, and glucose homeostasis. We also performed transcriptional analyses using RNA-Sequencing of adipocytes from these mice. Results: aPU.1KO mice have elevated energy expenditure at a young age and decreased adiposity and increased insulin sensitivity in later life. Corroborating these observations, transcriptional network analysis indicated the existence of validated, adipocyte PU.1-modulated regulatory hubs that direct inflammatory and thermogenic gene expression programs. Conclusion: Our data provide evidence for a previously uncharacterized role of PU.1 in the development of age-associated obesity and insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA