Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846240

RESUMO

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than ß-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


Assuntos
Regulação Alostérica/fisiologia , Dor/tratamento farmacológico , Receptores Opioides mu/metabolismo , Regulação Alostérica/efeitos dos fármacos , Analgesia/métodos , Analgésicos , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetulus , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Morfina , Antagonistas de Entorpecentes , Manejo da Dor/métodos , Estudo de Prova de Conceito , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/efeitos dos fármacos
3.
Molecules ; 28(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005269

RESUMO

Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52-0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics.


Assuntos
Analgésicos Opioides , Peptídeos Cíclicos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores Opioides delta/agonistas , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Opioides mu/agonistas , Peptídeos
4.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838810

RESUMO

New strategies facilitate the design of cyclic peptides which can penetrate the brain. We have designed a bicyclic peptide, OL-CTOP, composed of the sequences of a selective µ-opioid receptor antagonist, CTOP (f-cyclo(CYwOTX)T) (X = penicillamine, Pen; O = ornithine) and odorranalectin, OL (YASPK-cyclo(CFRYPNGVLAC)T), optimized its solid-phase synthesis and demonstrated its ability for nose-to-brain delivery and in vivo activity. The differences in reactivity of Cys and Pen thiol groups protected with trityl and/or acetamidomethyl protecting groups toward I2 in different solvents were exploited for selective disulfide bond formation on the solid phase. Both the single step and the sequential strategy applied to macrocyclization reactions generated the desired OL-CTOP, with the sequential strategy yielding a large quantity and better purity of crude OL-CTOP. Importantly, intranasally (i.n.s.) administered OL-CTOP dose-dependently antagonized the analgesic effect of morphine administered to mice through the intracerebroventricular route and prevented morphine-induced respiratory depression. In summary, the results demonstrate the feasibility of our solid-phase synthetic strategy for the preparation of the OL-CTOP bicyclic peptide containing two disulfide bonds and reveal the potential of odorranalectin for further modifications and the targeted delivery to the brain.


Assuntos
Técnicas de Síntese em Fase Sólida , Somatostatina , Camundongos , Animais , Administração Intranasal , Somatostatina/farmacologia , Receptores Opioides mu , Peptídeos/farmacologia , Morfina/farmacologia
5.
Proteomics ; 22(9): e2100137, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35081661

RESUMO

As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 µM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 µM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.


Assuntos
Dor Crônica , Neuralgia , Animais , Dor Crônica/metabolismo , Cisplatino , Modelos Animais de Doenças , Código das Histonas , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/metabolismo , Proteômica
6.
Handb Exp Pharmacol ; 271: 197-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463847

RESUMO

Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.


Assuntos
Antagonistas de Entorpecentes , Receptores Opioides kappa , Animais , Desenvolvimento de Medicamentos , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL
7.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054797

RESUMO

Neuropathic pain is a significant problem with few effective treatments lacking adverse effects. The sigma-1 receptor (S1R) is a potential therapeutic target for neuropathic pain, as antagonists for this receptor effectively ameliorate pain in both preclinical and clinical studies. The current research examines the antinociceptive and anti-allodynic efficacy of SI 1/28, a recently reported benzylpiperazine derivative and analog of the S1R antagonist SI 1/13, that was 423-fold more selective for S1R over the sigma-2 receptor (S2R). In addition, possible liabilities of respiration, sedation, and drug reinforcement caused by SI 1/28 have been evaluated. Inflammatory and chemical nociception, chronic nerve constriction injury (CCI) induced mechanical allodynia, and adverse effects of sedation in a rotarod assay, conditioned place preference (CPP), and changes in breath rate and locomotor activity were assessed after i.p. administration of SI 1/28. Pretreatment with SI 1/28 produced dose-dependent antinociception in the formalin test, with an ED50 (and 95% C.I.) value of 13.2 (7.42-28.3) mg/kg, i.p. Likewise, SI 1/28 produced dose-dependent antinociception against visceral nociception and anti-allodynia against CCI-induced neuropathic pain. SI 1/28 demonstrated no impairment of locomotor activity, conditioned place preference, or respiratory depression. In summary, SI 1/28 proved efficacious in the treatment of acute inflammatory pain and chronic neuropathy without liabilities at therapeutic doses, supporting the development of S1R antagonists as therapeutics for chronic pain.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Nociceptividade , Receptores sigma/antagonistas & inibidores , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Hiperalgesia/complicações , Inflamação/complicações , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Receptores sigma/metabolismo , Fatores de Tempo , Vísceras/patologia , Receptor Sigma-1
8.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077029

RESUMO

The design and development of analgesics with mixed-opioid receptor interactions has been reported to decrease side effects, minimizing respiratory depression and reinforcing properties to generate safer analgesic therapeutics. We synthesized bis-cyclic guanidine heterocyclic peptidomimetics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for the mu-opioid receptor (MOR), delta-opioid receptor (DOR), and kappa-opioid receptor (KOR) across the series, with compound 1968-22 displaying good affinity for all three receptors. Central intracerebroventricular (i.c.v.) administration of 1968-22 produced dose-dependent, opioid receptor-mediated antinociception in the mouse 55 °C warm-water tail-withdrawal assay, and 1968-22 also produced significant antinociception up to 80 min after oral administration (10 mg/kg, p.o.). Compound 1968-22 was detected in the brain 5 min after intravenous administration and was shown to be stable in the blood for at least 30 min. Central administration of 1968-22 did not produce significant respiratory depression, locomotor effects or conditioned place preference or aversion. The data suggest these bis-cyclic guanidine heterocyclic peptidomimetics with multifunctional opioid receptor activity may hold potential as new analgesics with fewer liabilities of use.


Assuntos
Peptidomiméticos , Insuficiência Respiratória , Analgésicos/química , Analgésicos/farmacologia , Analgésicos Opioides , Animais , Guanidina/farmacologia , Guanidinas/farmacologia , Ligantes , Camundongos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptores Opioides , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo
9.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684553

RESUMO

Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10-45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6-20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44-1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.


Assuntos
Neuralgia , Receptores sigma , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Ligantes , Masculino , Camundongos , Neuralgia/tratamento farmacológico
10.
Cell Mol Neurobiol ; 41(5): 1131-1143, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33433723

RESUMO

Chronic administration of opioids produces physical dependence and opioid-induced hyperalgesia. Users claim the Thai traditional tea "kratom" and component alkaloid mitragynine ameliorate opioid withdrawal without increased sensitivity to pain. Testing these claims, we assessed the combined kratom alkaloid extract (KAE) and two individual alkaloids, mitragynine (MG) and the analog mitragynine pseudoindoxyl (MP), evaluating their ability to produce physical dependence and induce hyperalgesia after chronic administration, and as treatments for withdrawal in morphine-dependent subjects. C57BL/6J mice (n = 10/drug) were administered repeated saline, or graded, escalating doses of morphine (intraperitoneal; i.p.), kratom alkaloid extract (orally, p.o.), mitragynine (p.o.), or MP (subcutaneously, s.c.) for 5 days. Mice treated chronically with morphine, KAE, or mitragynine demonstrated significant drug-induced hyperalgesia by day 5 in a 48 °C warm-water tail-withdrawal test. Mice were then administered naloxone (10 mg/kg, s.c.) and tested for opioid withdrawal signs. Kratom alkaloid extract and the two individual alkaloids demonstrated significantly fewer naloxone-precipitated withdrawal signs than morphine-treated mice. Additional C57BL/6J mice made physically dependent on morphine were then used to test the therapeutic potential of combined KAE, mitragynine, or MP given twice daily over the next 3 days at either a fixed dose or in graded, tapering descending doses. When administered naloxone, mice treated with KAE, mitragynine, or MP under either regimen demonstrated significantly fewer signs of precipitated withdrawal than control mice that continued to receive morphine. In conclusion, while retaining some liabilities, kratom, mitragynine, and mitragynine pseudoindoxyl produced significantly less physical dependence and ameliorated precipitated withdrawal in morphine-dependent animals, suggesting some clinical value.


Assuntos
Analgésicos Opioides/efeitos adversos , Mitragyna , Dependência de Morfina/prevenção & controle , Alcaloides de Triptamina e Secologanina/administração & dosagem , Alcaloides de Triptamina e Secologanina/síntese química , Síndrome de Abstinência a Substâncias/prevenção & controle , Analgésicos Opioides/administração & dosagem , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dependência de Morfina/metabolismo , Dependência de Morfina/psicologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina e Secologanina/efeitos adversos , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
11.
J Neurophysiol ; 123(4): 1332-1341, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101482

RESUMO

Human immunodeficiency virus (HIV)-1 transactivator of transcription protein (Tat) is a viral protein that promotes transcription of the HIV genome and possesses cell-signaling properties. Long-term exposure of central nervous system (CNS) tissue to HIV-1 Tat is theorized to contribute to HIV-associated neurodegenerative disorder (HAND). In the current study, we sought to directly evaluate the effect of HIV-1 Tat expression on the intrinsic electrophysiological properties of pyramidal neurons located in layer 2/3 of the medial prefrontal cortex and in area CA1 of the hippocampus. Toward that end, we drove Tat expression with doxycycline (100 mg·kg-1·day-1 ip) in inducible Tat (iTat) transgenic mice for 7 days and then performed single-cell electrophysiological studies in acute tissue slices made through the prefrontal cortex and hippocampus. Control experiments were performed in doxycycline-treated G-tg mice, which retain the tetracycline-sensitive promoter but do not express Tat. Our results indicated that the predominant effects of HIV-1 Tat expression are excitatory in medial prefrontal cortical pyramidal neurons yet inhibitory in hippocampal pyramidal neurons. Notably, in these two populations, HIV-1 Tat expression produced differential effects on neuronal gain, membrane time constant, resting membrane potential, and rheobase. Similarly, we also observed distinct effects on action potential kinetics and afterhyperpolarization, as well as on the current-voltage relationship in subthreshold voltage ranges. Collectively, these data provide mechanistic evidence of complex and region-specific changes in neuronal physiology by which HIV-1 Tat protein may promote cognitive deficits associated with HAND.NEW & NOTEWORTHY We drove expression of human immunodeficiency virus (HIV)-1 transactivator of transcription protein (Tat) protein in inducible Tat (iTat) transgenic mice for 7 days and then examined the effects on the intrinsic electrophysiological properties of pyramidal neurons located in the medial prefrontal cortex (mPFC) and in the hippocampus. Our results reveal a variety of specific changes that promote increased intrinsic excitability of layer II/III mPFC pyramidal neurons and decreased intrinsic excitability of hippocampal CA1 pyramidal neurons, highlighting both cell type and region-specific effects.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Fenômenos Eletrofisiológicos/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Células Piramidais/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/fisiopatologia , Animais , Modelos Animais de Doenças , HIV-1 , Camundongos , Camundongos Transgênicos , Células Piramidais/metabolismo
12.
J Pharmacol Exp Ther ; 374(2): 241-251, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32461322

RESUMO

Dysregulation of dopamine neurotransmission has been linked to the development of human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND). To investigate the mechanisms underlying this phenomenon, this study used an inducible HIV-1 transactivator of transcription (Tat) transgenic (iTat-tg) mouse model, which demonstrates brain-specific Tat expression induced by administration of doxycycline. We found that induction of Tat expression in the iTat-tg mice for either 7 or 14 days resulted in a decrease (∼30%) in the V max of [3H]dopamine uptake via both the dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex (PFC), which was comparable to the magnitude (∼35%) of the decrease in B max for [3H]WIN 35,428 and [3H]nisoxetine binding to DAT and NET, respectively. The decreased V max was not accompanied by a reduction of total or plasma membrane expression of DAT and NET. Consistent with the decreased V max for DAT and NET in the PFC, the current study also found an increase in the tissue content of DA and dihydroxyphenylacetic acid in the PFC of iTat-tg mice after 7 days' administration of doxycycline. Electrophysiological recordings in layer V pyramidal neurons of the prelimbic cortex from iTat-tg mice found a significant reduction in action potential firing, which was not sensitive to selective inhibitors for DAT and NET, respectively. These findings provide a molecular basis for using the iTat-tg mouse model in the studies of NeuroHIV. Determining the mechanistic basis underlying the interaction between Tat and DAT/NET may reveal novel therapeutic possibilities for preventing the increase in comorbid conditions as well as HAND. SIGNIFICANCE STATEMENT: Human immunodeficiency virus (HIV)-1 infection disrupts dopaminergic neurotransmission, leading to HIV-associated neurocognitive disorders (HANDs). Based on our in vitro and in vivo studies, dopamine uptake via both dopamine and norepinephrine transporters is decreased in the prefrontal cortex of HIV-1 Tat transgenic mice, which is consistent with the increased dopamine and dihydroxyphenylacetic acid contents in this brain region. Thus, these plasma membrane transporters are an important potential target for therapeutic intervention for patients with HAND.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Córtex Pré-Frontal/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Animais , Transporte Biológico , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Pré-Frontal/citologia
13.
Alcohol Clin Exp Res ; 44(9): 1791-1806, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767774

RESUMO

BACKGROUND: Microglia are the resident immune cells in the brain where they play essential roles in the development and maintenance of physiological functions of this organ. Aberrant activation of microglia is speculated to be involved in the pathogenesis of a variety of neurological disorders, including alcohol use disorders. Repeated binge ethanol (EtOH) consumption can have a profound impact on the function and integrity of the brain resulting in changes in behaviors such as withdrawal and reward. However, the microglial molecular and cellular pathways associated with EtOH binge consumption remain poorly understood. METHOD: In this study, adult C57BL/6J male and female mice were subjected daily to a gelatin-based drinking-in-the-dark voluntary EtOH consumption paradigm (3 h/d for 4 months) to characterize EtOH consumption and withdrawal-associated and anxiety-like behaviors. Brain microglia were isolated at the end and analyzed for protein expression profile changes using unbiased mass spectrometry-based proteomic analysis. RESULTS: Both male and female mice consistently consumed binge quantities of EtOH daily, resulting in blood EtOH levels > 80 mg/dl measured at the end of the 3-hour daily consumption period. Although female mice consumed a significantly greater amount of EtOH than male mice, EtOH withdrawal-associated anxiety-like behaviors measured by marble-burying, light-dark box, and elevated plus maze tests were predominantly observed in male mice. Proteomic analysis of microglia isolated from the brains of animals at the end of the 4-month binge EtOH consumption identified 117 and 37 proteins that were significantly up- or downregulated in EtOH-exposed male and female mice, respectively, compared to their pair-fed controls. Protein expression profile-based pathway analysis identified several cellular pathways that may underlie the sex-specific and EtOH withdrawal-associated behavioral abnormalities. CONCLUSION: Taken together, our findings revealed sex-specific changes in EtOH withdrawal-associated behaviors and signaling pathways in the mouse brain microglia and may help advance our understanding of the molecular, cellular, and behavioral changes related to human binge EtOH consumption.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Microglia/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Feminino , Masculino , Camundongos , Microglia/metabolismo , Proteômica , Autoadministração , Caracteres Sexuais , Transdução de Sinais , Síndrome de Abstinência a Substâncias/etiologia
14.
Molecules ; 25(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887303

RESUMO

The macrocyclic tetrapeptide cyclo[Phe-d-Pro-Phe-Trp] (CJ-15,208) and its stereoisomer cyclo[Phe-d-Pro-Phe-d-Trp] exhibit different opioid activity profiles in vivo. The present study evaluated the influence of the Phe residues' stereochemistry on the peptides' opioid activity. Five stereoisomers were synthesized by a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance development, and place conditioning were also assessed in vivo. All of the stereoisomers exhibited antinociception following either intracerebroventricular or oral administration differentially mediated by multiple opioid receptors, with kappa opioid receptor (KOR) activity contributing for all of the peptides. However, unlike the parent peptides, KOR antagonism was exhibited by only one stereoisomer, while another isomer produced DOR antagonism. The stereoisomers of CJ-15,208 lacked significant respiratory effects, while the [d-Trp]CJ-15,208 stereoisomers did not elicit antinociceptive tolerance. Two isomers, cyclo[d-Phe-d-Pro-d-Phe-Trp] (3) and cyclo[Phe-d-Pro-d-Phe-d-Trp] (5), did not elicit either preference or aversion in a conditioned place preference assay. Collectively, these stereoisomers represent new lead compounds for further investigation in the development of safer opioid analgesics.


Assuntos
Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/farmacologia , Fenilalanina/química , Analgésicos/farmacologia , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Animais , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Receptores Opioides/química , Receptores Opioides/metabolismo , Estereoisomerismo
15.
Org Biomol Chem ; 17(21): 5305-5315, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31094391

RESUMO

Numerous studies demonstrate the promise of opioid peptides as analgesics, but poor oral bioavailability has limited their therapeutic development. This study sought to increase the oral bioavailability of opioid peptides by cyclization, using Hantzsch-based macrocyclization strategies to produce two new series of cyclized DAMGO and Leu/Met-enkephalin analogs. Opioid receptor affinity and selectivity for compounds in each series were assessed in vitro with radioligand competition binding assays. Compounds demonstrated modest affinity but high selectivity for the mu, delta, and kappa opioid receptors (MOR, DOR and KOR), while selectivity for mu opioid receptors varied by structure. Antinociceptive activity of each compound was initially screened in vivo following intracerebroventricular (i.c.v.) administration and testing in the mouse 55 °C warm-water tail-withdrawal test. The four most active compounds were then evaluated for dose- and time-dependent antinociception, and opioid receptor selectivity in vivo. Cyclic compounds 1924-10, 1936-1, 1936-7, and 1936-9 produced robust and long- lasting antinociception with ED50 values ranging from 0.32-0.75 nmol following i.c.v. administration mediated primarily by mu- and delta-opioid receptor agonism. Compounds 1924-10, 1936-1 and 1936-9 further displayed significant time-dependent antinociception after oral (10 mg kg-1, p.o.) administration. A higher oral dose (30 mg kg-1. p.o.) of all four cyclic peptides also reduced centrally-mediated respiration, suggesting successful penitration into the CNS. Overall, these data suggest cyclized opioid peptides synthesized by a Hantzsch-based macrocyclization strategy can retain opioid agonist activity to produce potent antinociception in vivo while conveying improved bioavailability following oral administration.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalina Metionina/farmacologia , Receptores Opioides/agonistas , Tiazóis/farmacologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/química , Animais , Ciclização , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Ala(2)-MePhe(4)-Gly(5)-Encefalina/química , Encefalina Metionina/administração & dosagem , Encefalina Metionina/química , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Taxa Respiratória , Tiazóis/administração & dosagem , Tiazóis/química
16.
Glia ; 66(9): 1915-1928, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29733459

RESUMO

The transactivator of transcription protein, HIV-1 Tat, is linked to neuroAIDS, where degeneration of dopamine neurons occurs. Using a mouse model expressing GFAP-driven Tat protein under doxycycline (Dox) regulation, we investigated microglial-neuronal interactions in the rostral substantia nigra pars compacta (SNc). Immunohistochemistry for microglia and tyrosine hydroxylase (TH) showed that the ratio of microglia to dopamine neurons is smaller in the SNc than in the ventral tegmental area (VTA) and that this difference is maintained following 7-day Dox exposure in wild type animals. Administration of Dox to wild types had no effect on microglial densities. In addressing the sensitivity of neurons to potentially adverse effects of HIV-1 Tat, we found that HIV-1 Tat exposure in vivo selectively decreased TH immunoreactivity in the SNc but not in the VTA, while levels of TH mRNA in the SNc remained unchanged. HIV-1 Tat induction in vivo did not alter the total number of neurons in these brain regions. Application of Tat (5 ng) into dopamine neurons with whole-cell patch pipette decreased spontaneous firing activity. Tat induction also produced a decline in microglial cell numbers, but no microglial activation. Thus, disappearance of dopaminergic phenotype is due to a loss of TH immunoreactivity rather than to neuronal death, which would have triggered microglial activation. We conclude that adverse effects of HIV-1 Tat produce a hypodopamine state by decreasing TH immunoreactivity and firing activity of dopamine neurons. Reduced microglial numbers after Tat exposure in vivo suggest impaired microglial functions and altered bidirectional interactions between dopamine neurons and microglia.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Transmissão Sináptica/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Encéfalo/patologia , Encéfalo/virologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Dopamina/metabolismo , Neurônios Dopaminérgicos/virologia , HIV-1 , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Microglia/virologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Horm Behav ; 65(5): 445-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24726788

RESUMO

Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17ß-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17ß-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17ß-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice.


Assuntos
Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ovariectomia , Progesterona/farmacologia , Progestinas/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Animais , Química Encefálica/efeitos dos fármacos , Doxiciclina/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
Behav Pharmacol ; 25(5-6): 599-608, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25083575

RESUMO

Maladaptive behavioral responses characteristic of post-traumatic stress disorders are notably resistant to treatment. We hypothesized that the pharmacological disruption of memories activated during reconsolidation might reverse established stress-induced increases in depression-like behaviors and cocaine reward. C57BL/6J mice were subjected to repeated social defeat stress (SDS), and examined for time spent immobile in a subsequent forced swim test (FST). An additional set of SDS-exposed mice were place-conditioned with cocaine, and tested for cocaine-conditioned place preference (CPP). All stress-exposed mice were then subjected to a single additional trial of SDS while under the influence of propranolol or cycloheximide to disrupt memory reconsolidation, then given one additional FST or CPP test the next day. Mice subjected to repeated SDS subsequently demonstrated increases in time spent immobile in the FST or in the cocaine-paired chamber. Vehicle-treatment followed by additional SDS exposure did not alter these behaviors, but propranolol or cycloheximide treatment reversed each of the potentiated responses in a dose-dependent manner. Overall, these results demonstrate that while repeated exposure to a social defeat stressor subsequently increased depression-like behavior and cocaine-CPP, disruption of traumatic memories made labile by re-exposure to SDS during reconsolidation may have therapeutic value in the treatment of established post-traumatic stress disorder-related behaviors.


Assuntos
Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Transtorno Depressivo/fisiopatologia , Inibidores da Captação de Dopamina/farmacologia , Memória/fisiologia , Estresse Psicológico/fisiopatologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Condicionamento Psicológico/fisiologia , Cicloeximida/farmacologia , Dominação-Subordinação , Relação Dose-Resposta a Droga , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Propranolol/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Estresse Psicológico/psicologia , Natação
20.
NeuroImmune Pharm Ther ; 3(1): 1-6, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38711842

RESUMO

Objectives: HIV-1 Tat (transactivator of transcription) protein disrupts dopaminergic transmission and potentiates the rewarding effects of cocaine. Allosteric modulators of the dopamine transporter (DAT) have been shown to reverse Tat-induced DAT dysfunction. We hypothesized that a novel DAT allosteric modulator, SRI-30827, would counteract Tat-induced potentiation of cocaine reward. Methods: Doxycycline (Dox)-inducible Tat transgenic (iTat-tg) mice and their G-tg (Tat-null) counterparts were tested in a cocaine conditioned place preference (CPP) paradigm. Mice were treated 14 days with saline, or Dox (100 mg/kg/day, i.p.) to induce Tat protein. Upon induction, mice were place conditioned two days with cocaine (10 mg/kg/day) after a 1-h daily intracerebroventricular (i.c.v.) pretreatment with SRI-30827 (1 nmol) or a vehicle control, and final place preference assessed as a measure of cocaine reward. Results: Dox-treatment significantly potentiated cocaine-CPP in iTat-tg mice over the response of saline-treated control littermates. SRI-30827 treatment eliminated Tat-induced potentiation without altering normal cocaine-CPP in saline-treated mice. Likewise, SRI-30827 did not alter cocaine-CPP in both saline- and Dox-treated G-tg mice incapable of expressing Tat protein. Conclusions: These findings add to a growing body of evidence that allosteric modulation of DAT could provide a promising therapeutic intervention for patients with comorbid HIV-1 and cocaine use disorder (CUD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA