Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(16): e202200060, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35133031

RESUMO

We report a method for the synthesis of chiral vicinal chloroamines via asymmetric protonation of catalytically generated prochiral chloroenamines using chiral Brønsted acids. The process is highly enantioselective, with the origin of asymmetry and catalyst substituent effects elucidated by DFT calculations. We show the utility of the method as an approach to the synthesis of a broad range of heterocycle-substituted aziridines by treatment of the chloroamines with base in a one-pot process, as well as the utility of the process to allow access to vicinal diamines.


Assuntos
Aziridinas , Catálise , Cloraminas , Ciclização , Estereoisomerismo
2.
Angew Chem Int Ed Engl ; 61(8): e202114482, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905284

RESUMO

The ability to selectively react one functional group in the presence of another underpins efficient reaction sequences. Despite many designer catalytic systems being reported for hydroboration reactions, which allow introduction of a functional handle for cross-coupling or act as mild method for reducing polar functionality, these platforms rarely deal with more complex systems where multiple potentially reactive sites exist. Here we demonstrate, for the first time, the ability to use light to distinguish between ketones and carboxylic acids in more complex molecules. By taking advantage of different activation modes, a single catalytic system can be used for hydroboration, with the chemoselectivity dictated only by the presence or absence of visible light.

3.
Org Lett ; 18(7): 1694-7, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27001375

RESUMO

Aromatic ynamines or N-alkynylheteroarenes are highly reactive alkyne components in Cu-catalyzed Huisgen [3 + 2] cycloaddition ("click") reactions. This enhanced reactivity enables the chemoselective formation of 1,4-triazoles using the representative aromatic ynamine N-ethynylbenzimidazole in the presence of a competing aliphatic alkyne substrate. The unique chemoselectivity profile of N-ethynylbenzimidazole is further demonstrated by the sequential click ligation of a series of highly functionalized azides using a heterobifunctional diyne, dispelling the need for alkyne protecting groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA