Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Mol Cell Cardiol ; 141: 70-81, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209328

RESUMO

RATIONALE: The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE: To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS: The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 µM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 µM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS: NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.


Assuntos
Ativação do Canal Iônico , Miocárdio/metabolismo , NAD/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Acetilação/efeitos dos fármacos , Animais , Suplementos Nutricionais , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lisina/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Ratos Sprague-Dawley
2.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L805-L815, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577161

RESUMO

Histological observations in human pulmonary arterial hypertension (PAH) suggest a link between plexiform lesions and pulmonary supernumerary arteries. Pulmonary microvascular endothelial cells are characterized as hyperproliferative and progenitor-like. This study investigates the hypothesis that aneurysm-type plexiform lesions form in pulmonary supernumerary arteries because of their anatomical properties and endothelial characteristics similar to pulmonary microvascular endothelial cells. To induce PAH, rats were injected with Sugen5416, and exposed to hypoxia (10% O2) for 3 days (early stage) or 3 wk (mid-stage), or 3 wk of hypoxia with an additional 10 wk of normoxia (late-stage PAH). We examined morphology of pulmonary vasculature and vascular remodeling in lung serial sections from PAH and normal rats. Aneurysm-type plexiform lesions formed in small side branches of pulmonary arteries with morphological characteristics similar to supernumerary arteries. Over the course of PAH development, the number of Ki67-positive cells increased in small pulmonary arteries, including supernumerary arteries, whereas the number stayed consistently low in large pulmonary arteries. The increase in Ki67-positive cells was delayed in supernumerary arteries compared with small pulmonary arteries. In late-stage PAH, ~90% of small unconventional side branches that were likely to be supernumerary arteries were nearly closed. These results support our hypothesis that supernumerary arteries are the predominant site for aneurysm-type plexiform lesions in Sugen5416/hypoxia/normoxia-exposed PAH rats partly because of the combination of their unique anatomical properties and the hyperproliferative potential of endothelial cells. We propose that the delayed and extensive occlusive lesion formation in supernumerary arteries could be a preventive therapeutic target in patients with PAH.


Assuntos
Aneurisma/patologia , Proliferação de Células , Modelos Animais de Doenças , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/prevenção & controle , Artéria Pulmonar/patologia , Remodelação Vascular , Aneurisma/etiologia , Animais , Masculino , Hipertensão Arterial Pulmonar/complicações , Ratos , Ratos Sprague-Dawley
3.
Nucleic Acids Res ; 44(15): 7120-31, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27418678

RESUMO

MicroRNAs (miRs) have emerged as key biological effectors in human health and disease. These small noncoding RNAs are incorporated into Argonaute (Ago) proteins, where they direct post-transcriptional gene silencing via base-pairing with target transcripts. Although miRs have become intriguing biological entities and attractive therapeutic targets, the translational impacts of miR research remain limited by a paucity of empirical miR targeting data, particularly in human primary tissues. Here, to improve our understanding of the diverse roles miRs play in cardiovascular function and disease, we applied high-throughput methods to globally profile miR:target interactions in human heart tissues. We deciphered Ago2:RNA interactions using crosslinking immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to generate the first transcriptome-wide map of miR targeting events in human myocardium, detecting 4000 cardiac Ago2 binding sites across >2200 target transcripts. Our initial exploration of this interactome revealed an abundance of miR target sites in gene coding regions, including several sites pointing to new miR-29 functions in regulating cardiomyocyte calcium, growth and metabolism. Also, we uncovered several clinically-relevant interactions involving common genetic variants that alter miR targeting events in cardiomyopathy-associated genes. Overall, these data provide a critical resource for bolstering translational miR research in heart, and likely beyond.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Reagentes de Ligações Cruzadas , Imunoprecipitação , MicroRNAs/metabolismo , Miocárdio/metabolismo , Transcriptoma/genética , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miocárdio/citologia , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade por Substrato
4.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405715

RESUMO

Background: Centrosomes localize to perinuclear foci where they serve multifunctional roles, arranging the microtubule organizing center (MTOC) and anchoring ubiquitin-proteasome system (UPS) machinery. In mature cardiomyocytes, centrosomal proteins redistribute into a specialized perinuclear cage-like structure, and a potential centrosome-UPS interface has not been studied. Taxilin-beta (Txlnb), a cardiomyocyte-enriched protein, belongs to a family of centrosome adapter proteins implicated in protein quality control. We hypothesize that Txlnb plays a key role in centrosomal-proteasomal crosstalk in cardiomyocytes. Methods: Integrative bioinformatics assessed centrosomal gene dysregulation in failing hearts. Txlnb gain/loss-of-function studies were conducted in cultured cardiomyocytes and mice. Txlnb's role in cardiac proteotoxicity and hypertrophy was examined using CryAB-R120G mice and transverse aortic constriction (TAC), respectively. Molecular modeling investigated Txlnb structure/function. Results: Human failing hearts show consistent dysregulation of many centrosome-associated genes, alongside UPS-related genes. Txlnb emerged as a candidate regulator of cardiomyocyte proteostasis that localizes to the perinuclear centrosomal compartment. Txlnb's interactome strongly supports its involvement in cytoskeletal, microtubule, and UPS processes, particularly centrosome-related functions. Overexpressing Txlnb in cardiomyocytes reduced ubiquitinated protein accumulation and enhanced proteasome activity during hypertrophy. Txlnb-knockout (KO) mouse hearts exhibit proteasomal insufficiency and altered cardiac growth, evidenced by ubiquitinated protein accumulation, decreased 26Sß5 proteasome activity, and lower mass with age. In Cryab-R120G mice, Txlnb loss worsened heart failure, causing lower ejection fractions. After TAC, Txlnb-KO mice also showed reduced ejection fraction, increased heart mass, and elevated ubiquitinated protein accumulation. Investigations into the molecular mechanisms revealed that Txlnb-KO did not affect proteasomal subunit expression but led to the upregulation of Txlna and several centrosomal proteins (Cep63, Ofd1, and Tubg) suggesting altered centrosomal dynamics. Structural predictions support Txlnb's role as a specialized centrosomal-adapter protein bridging centrosomes with proteasomes, confirmed by microtubule-dependent perinuclear localization. Conclusions: Together, these data provide initial evidence connecting Txlnb to cardiac proteostasis, hinting at the potential importance of functional bridging between specialized centrosomes and UPS in cardiomyocytes.

5.
bioRxiv ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39211120

RESUMO

SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A -short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A -short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.

6.
bioRxiv ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39149347

RESUMO

MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.

7.
Mol Ther Nucleic Acids ; 34: 102081, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38111915

RESUMO

MicroRNAs (miRNAs) control the expression of diverse subsets of target mRNAs, and studies have found miRNA dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increases with aging, and is altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Here, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated virus (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. The integration of RNA sequencing and miRNA-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.

8.
Front Pharmacol ; 14: 1275388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348353

RESUMO

Oral consumption of histidyl dipeptides such as l-carnosine has been suggested to promote cardiometabolic health, although therapeutic mechanisms remain incompletely understood. We recently reported that oral consumption of a carnosine analog suppressed markers of fibrosis in liver of obese mice, but whether antifibrotic effects of carnosine extend to the heart is not known, nor are the mechanisms by which carnosine is acting. Here, we investigated whether oral carnosine was able to mitigate the adverse cardiac remodeling associated with diet induced obesity in a mouse model of enhanced lipid peroxidation (i.e., glutathione peroxidase 4 deficient mice, GPx4+/-), a model which mimics many of the pathophysiological aspects of metabolic syndrome and T2 diabetes in humans. Wild-type (WT) and GPx4+/-male mice were randomly fed a standard (CNTL) or high fat high sucrose diet (HFHS) for 16 weeks. Seven weeks after starting the diet, a subset of the HFHS mice received carnosine (80 mM) in their drinking water for duration of the study. Carnosine treatment led to a moderate improvement in glycemic control in WT and GPx4+/-mice on HFHS diet, although insulin sensitivity was not significantly affected. Interestingly, while our transcriptomic analysis revealed that carnosine therapy had only modest impact on global gene expression in the heart, carnosine substantially upregulated cardiac GPx4 expression in both WT and GPx4+/-mice on HFHS diet. Carnosine also significantly reduced protein carbonyls and iron levels in myocardial tissue from both genotypes on HFHS diet. Importantly, we observed a robust antifibrotic effect of carnosine therapy in hearts from mice on HFHS diet, which further in vitro experiments suggest is due to carnosine's ability to suppress collagen-cross-linking. Collectively, this study reveals antifibrotic potential of carnosine in the heart with obesity and illustrates key mechanisms by which it may be acting.

9.
Mol Ther Nucleic Acids ; 28: 1-15, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35280925

RESUMO

Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.

10.
J Am Heart Assoc ; 11(13): e025687, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730644

RESUMO

Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult-onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte-specific knockout mice (Sorbs2-cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult-onset cardiomyopathies and in heart failure models. We generated Sorbs2-cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2-cKO mice begin to show atrial enlargement and P-wave anomalies, without dysregulation of action potential-associated ion channel and gap junction protein expressions. After 6 months, Sorbs2-cKO mice exhibit impaired contractility in dobutamine-treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2-cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2-cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross-link sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Humanos , Lactente , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Domínios de Homologia de src
11.
Mol Ther Nucleic Acids ; 19: 1000-1014, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32044723

RESUMO

To address the problem of poor asthma control due to drug resistance, an antisense oligonucleotide complementary to mmu-miR-145a-5p (antimiR-145) was tested in a house dust mite mouse model of mild/moderate asthma. miR-145 was targeted to reduce inflammation, regulate epithelial-mesenchymal transitions, and promote differentiation of structural cells. In addition, several chemical variations of a nontargeting oligonucleotide were tested to define sequence-dependent effects of the miRNA antagonist. After intravenous administration, oligonucleotides complexed with a pegylated cationic lipid nanoparticle distributed to most cells in the lung parenchyma but were not present in smooth muscle or the mucosal epithelium of the upper airways. Treatment with antimiR-145 and a nontargeting oligonucleotide both reduced eosinophilia, reduced obstructive airway remodeling, reduced mucosal metaplasia, and reduced CD68 immunoreactivity. Poly(A) RNA-seq verified that antimiR-145 increased levels of many miR-145 target transcripts. Genes upregulated in human asthma and the mouse model of asthma were downregulated by oligonucleotide treatments. However, both oligonucleotides significantly upregulated many genes of interferon signaling pathways. These results establish effective lung delivery and efficacy of locked nucleic acid/DNA oligonucleotides administered intravenously, and suggest that some of the beneficial effects of oligonucleotide therapy of lung inflammation may be due to normalization of interferon response pathways.

12.
Cell Rep ; 23(13): 3710-3720.e8, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949756

RESUMO

Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca2+. Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Oxirredução , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência
13.
J Clin Invest ; 128(3): 1154-1163, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457789

RESUMO

SCN5A encodes the voltage-gated Na+ channel NaV1.5 that is responsible for depolarization of the cardiac action potential and rapid intercellular conduction. Mutations disrupting the SCN5A coding sequence cause inherited arrhythmias and cardiomyopathy, and single-nucleotide polymorphisms (SNPs) linked to SCN5A splicing, localization, and function associate with heart failure-related sudden cardiac death. However, the clinical relevance of SNPs that modulate SCN5A expression levels remains understudied. We recently generated a transcriptome-wide map of microRNA (miR) binding sites in human heart, evaluated their overlap with common SNPs, and identified a synonymous SNP (rs1805126) adjacent to a miR-24 site within the SCN5A coding sequence. This SNP was previously shown to reproducibly associate with cardiac electrophysiological parameters, but was not considered to be causal. Here, we show that miR-24 potently suppresses SCN5A expression and that rs1805126 modulates this regulation. We found that the rs1805126 minor allele associates with decreased cardiac SCN5A expression and that heart failure subjects homozygous for the minor allele have decreased ejection fraction and increased mortality, but not increased ventricular tachyarrhythmias. In mice, we identified a potential basis for this in discovering that decreased Scn5a expression leads to accumulation of myocardial reactive oxygen species. Together, these data reiterate the importance of considering the mechanistic significance of synonymous SNPs as they relate to miRs and disease, and highlight a surprising link between SCN5A expression and nonarrhythmic death in heart failure.


Assuntos
Insuficiência Cardíaca/genética , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Idoso , Alelos , Animais , Sítios de Ligação , Morte Súbita Cardíaca , Feminino , Perfilação da Expressão Gênica , Genótipo , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Homozigoto , Humanos , Desequilíbrio de Ligação , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Polimorfismo de Nucleotídeo Único , Ratos Sprague-Dawley
14.
Physiol Rep ; 4(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26811053

RESUMO

Chronic exposure to hypoxia causes pulmonary hypertension and pulmonary arterial remodeling. Although the exact mechanisms of this remodeling are unclear, there is evidence that it is dependent on hemodynamic stress, rather than on hypoxia alone. Pulmonary supernumerary arteries experience low hemodynamic stress as a consequence of reduced perfusion due to 90° branching angles, small diameters, and "valve-like" structures at their orifices. We investigated whether or not intra-acinar supernumerary arteries undergo structural remodeling during the moderate pulmonary hypertension induced by chronic hypoxia. Rats were exposed to either normoxia or hypoxia for 6 weeks. The chronically hypoxic rats developed pulmonary hypertension. For both groups, pulmonary arteries were selectively filled with barium-gelatin mixture, and the wall thickness of intra-acinar pulmonary arteries was measured in histological samples. Only thin-walled arteries were observed in normoxic lungs. In hypertensive lungs, we found both thin- and thick-walled pulmonary arteries with similar diameters. Disproportionate degrees of arterial wall thickening between parent and daughter branches were observed with supernumerary branching patterns. While parent arteries developed significant wall thickening, their supernumerary branches did not. Thus, chronic hypoxia-induced pulmonary hypertension did not cause wall thickening of intra-acinar pulmonary supernumerary arteries. These findings are consistent with the idea that hemodynamic stress, rather than hypoxia alone, is the cause of structural remodeling during chronic exposure to hypoxia.


Assuntos
Hemodinâmica/fisiologia , Hipóxia/complicações , Pulmão/patologia , Artéria Pulmonar/patologia , Remodelação Vascular/fisiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Masculino , Ratos , Ratos Sprague-Dawley
15.
Pulm Circ ; 6(3): 369-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683614

RESUMO

Despite several advances in the pathobiology of pulmonary arterial hypertension (PAH), its pathogenesis is not completely understood. Current therapy improves symptoms but has disappointing effects on survival. Sphingosine-1-phosphate (S1P) is a lysophospholipid synthesized by sphingosine kinase 1 (SphK1) and SphK2. Considering the regulatory roles of S1P in several tissues leading to vasoconstriction, inflammation, proliferation, and fibrosis, we investigated whether S1P plays a role in the pathogenesis of PAH. To test this hypothesis, we used plasma samples and lung tissue from patients with idiopathic PAH (IPAH) and the Sugen5416/hypoxia/normoxia rat model of occlusive PAH. Our study revealed an increase in the plasma concentration of S1P in patients with IPAH and in early and late stages of PAH in rats. We observed increased expression of both SphK1 and SphK2 in the remodeled pulmonary arteries of patients with IPAH and PAH rats. Exogenous S1P stimulated the proliferation of cultured rat pulmonary arterial endothelial and smooth-muscle cells. We also found that 3 weeks of treatment of late-stage PAH rats with an SphK1 inhibitor reduced the increased plasma levels of S1P and the occlusive pulmonary arteriopathy. Although inhibition of SphK1 improved cardiac index and the total pulmonary artery resistance index, it did not reduce right ventricular systolic pressure or right ventricular hypertrophy. Our study supports that S1P is involved in the pathogenesis of occlusive arteriopathy in PAH and provides further evidence that S1P signaling may be a novel therapeutic target.

16.
Pulm Circ ; 5(2): 349-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26064461

RESUMO

A frequently used end point of clinical outcomes in patients with pulmonary arterial hypertension (PAH) is the 6-minute walk distance. Furthermore, some data suggest that mild to moderate exercise as an intervention in stable PAH is beneficial. Some of these questions have been recapitulated in the monocrotaline and hypoxia animal models of pulmonary hypertension. However, mild exercise and walk distance as end points have not been rigorously examined in the severe progressive Sugen 5416/hypoxia/normoxia (Su/Hx/Nx) animal model of PAH at each stage of worsening disease. Our hypothesis was that animals that were preselected as runners would have increased walk times and improved right ventricle/left ventricle plus septum (RV/LV+S) ratios, echocardiography, and histology compared with nonexercised Su/Hx/Nx animals. We examined four groups of rats: Su/Hx/Nx sedentary, Su/Hx/Nx exercised, control sedentary, and control exercised. Echocardiography was performed at 5, 8, and 13 weeks to assess right ventricular inner diameter in diastole and left ventricular eccentricity index. We found no difference between exercised and sedentary Su/Hx/Nx rats, and both were worsened compared with controls. Rats were euthanized at 13 weeks, and we found that neither RV/LV+S nor the occurrence of occlusive lesions were influenced by exercise. Most interesting, however, was that despite progressive PAH development, exercised Su/Hx/Nx rats showed no decrease in time or distance for treadmill exercise. In all, our data suggest that, despite severe PAH development, Su/Hx/Nx rats retain the same treadmill exercise capacity as control animals.

17.
J Control Release ; 210: 67-75, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25979327

RESUMO

Therapies that exploit RNA interference (RNAi) hold great potential for improving disease outcomes. However, there are several challenges that limit the application of RNAi therapeutics. One of the most important challenges is effective delivery of oligonucleotides to target cells and reduced delivery to non-target cells. We have previously developed a functionalized cationic lipopolyamine (Star:Star-mPEG-550) for in vivo delivery of siRNA to pulmonary vascular cells. This optimized lipid formulation enhances the retention of siRNA in mouse lungs and achieves significant knockdown of target gene expression for at least 10days following a single intravenous injection. Although this suggests great potential for developing lung-directed RNAi-based therapies, the application of Star:Star-mPEG mediated delivery of RNAi based therapies for pulmonary vascular diseases such as pulmonary arterial hypertension (PAH) remains unknown. We identified differential expression of several microRNAs known to regulate cell proliferation, cell survival and cell fate that are associated with development of PAH, including increased expression of microRNA-145 (miR-145). Here we test the hypothesis that Star:Star-mPEG mediated delivery of an antisense oligonucleotide against miR-145 (antimiR-145) will improve established PAH in rats. We performed a series of experiments testing the in vivo distribution, toxicity, and efficacy of Star:Star-mPEG mediated delivery of antimiR-145 in rats with Sugen-5416/hypoxia induced PAH. We showed that after subchronic therapy of three intravenous injections over 5weeks at 2mg/kg, antimiR-145 accumulated in rat lung tissue and reduced expression of endogenous miR-145. Using a novel in situ hybridization approach, we demonstrated substantial distribution of antimiR-145 in the lungs as well as the liver, kidney, and spleen. We assessed toxic effects of Star:Star-mPEG/antimiR-145 with serial complete blood counts of leukocytes and serum metabolic panels, gross pathology, and histopathology and did not detect significant off-target effects. AntimiR-145 reduced the degree of pulmonary arteriopathy, reduced the severity of pulmonary hypertension, and reduced the degree of cardiac dysfunction. The results establish effective and low toxicity of lung delivery of a miRNA-145 inhibitor using functionalized cationic lipopolyamine nanoparticles to repair pulmonary arteriopathy and improve cardiac function in rats with severe PAH.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Nanopartículas/administração & dosagem , Oligonucleotídeos/administração & dosagem , Animais , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Indóis , Lipídeos/química , Lipossomos , Pulmão/metabolismo , Masculino , MicroRNAs/metabolismo , Nanopartículas/química , Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Pirróis , Ratos Sprague-Dawley
18.
Mol Cell Pharmacol ; 4(1): 1-16, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25309675

RESUMO

Advances in studies of microRNA (miRNA) expression and function in smooth muscles illustrate important effects of small noncoding RNAs on cell proliferation, hypertrophy and differentiation. An emerging theme in miRNA research in a variety of cell types including smooth muscles is that miRNAs regulate protein expression networks to fine tune phenotype. Some widely expressed miRNAs have been described in smooth muscles that regulate important processes in many cell types, such as miR-21 control of proliferation and cell survival. Other miRNAs that are prominent regulators of smooth muscle-restricted gene expression also have targets that control pluripotent cell differentiation. The miR-143~145 cluster which targets myocardin and Kruppel-like factor 4 (KLF4) is arguably the best-described miRNA family in smooth muscles with profound effects on gene expression networks that promote serum response factor (SRF)-dependent contractile and cytoskeletal protein expression and the mature contractile phenotype. Kruppel-family members KLF4 and KLF5 have multiple effects on cell differentiation and are targets for multiple miRNAs in smooth muscles (miR-145, miR-146a, miR-25). The feedback and feedforward loops being defined appear to contribute significantly to vascular and airway remodeling in cardiovascular and respiratory diseases. RNA interference approaches applied to animal models of vascular and respiratory diseases prove that miRNAs and RNA-induced silencing are valid targets for novel anti-remodeling therapies that alter pathological smooth muscle hyperplasia and hypertrophy.

19.
Pulm Circ ; 1(3): 357-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140625

RESUMO

During normal lung development and in lung diseases structural cells in the lungs adapt to permit changes in lung function. Fibroblasts, myofibroblasts, smooth muscle, epithelial cells, and various progenitor cells can all undergo phenotypic modulation. In the pulmonary vasculature occlusive vascular lesions that occur in severe pulmonary arterial hypertension are multifocal, polyclonal lesions containing cells presumed to have undergone phenotypic transition resulting in altered proliferation, cell lifespan or contractility. Dynamic changes in gene expression and protein composition that underlie processes responsible for such cellular plasticity are not fully defined. Advances in molecular biology have shown that multiple classes of ribonucleic acid (RNA) collaborate to establish the set of proteins expressed in a cell. Both coding Messenger Ribonucleic acid (mRNA) and small noncoding RNAs (miRNA) act via multiple parallel signaling pathways to regulate transcription, mRNA processing, mRNA stability, translation and possibly protein lifespan. Rapid progress has been made in describing dynamic features of miRNA expression and miRNA function in some vascular tissues. However posttranscriptional gene silencing by microRNA-mediated mRNA degradation and translational blockade is not as well defined in the pulmonary vasculature. Recent progress in defining miRNAs that modulate vascular cell phenotypes is reviewed to illustrate both functional and therapeutic significance of small noncoding RNAs in pulmonary arterial hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA