Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurotrauma ; 22(12): 1456-74, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16379583

RESUMO

The NTera2 (NT2) cell line is a homogeneous population of cells, which, when treated in vitro with retinoic acid, terminally differentiate into postmitotic neuronal NT2N cells. Although NT2N neurons transplanted in the acute (24 h postinjury) period survive for up to 1 month following experimental traumatic brain injury (TBI), nothing is known of their ability to survive for longer periods or of their effects when engrafted during the chronic postinjury period. Adult male Sprague-Dawley rats (n = 348; 360-400 g) were initially anesthetized and subjected to severe lateral fluid-percussion (FP) brain injury or sham injury. At 1 month postinjury, only brain-injured animals showing severe neurobehavioral deficits received cryopreserved NT2N neurons stereotaxically transplanted into three sites in the peri-injured cortex (n = 18). Separate groups of similarly brain-injured rats received human fibroblast cells (n = 13) or cell suspension vehicle (n = 14). Sham-injured animals (no brain injury) served as controls and received NT2N transplants (n = 24). All animals received daily immunosuppression for three months. Behavioral testing was performed at 1, 4, 8, and 12 weeks post-transplantation, after which animals were sacrificed for histological analysis. Nissl staining and anti-human neuronal specific enolase (NSE) immunostaining revealed that NT2N neurons transplanted in the chronic post-injury period survived up to 12 weeks post-transplantation, extended processes into the host cortex and immunolabeled positively for synaptophysin. There were no statistical differences in cognitive or motor function among the transplanted brain-injured groups. Long-term graft survival suggests that NT2N neurons may be a viable source of neural cells for transplantation after TBI and also that these grafts can survive for a prolonged time and extend processes into the host cortex when transplanted in the chronic post-injury period following TBI.


Assuntos
Comportamento Animal/fisiologia , Lesões Encefálicas/terapia , Sobrevivência de Enxerto/fisiologia , Neurônios/transplante , Transplante Heterólogo , Animais , Lesões Encefálicas/patologia , Linhagem Celular , Humanos , Imuno-Histoquímica , Masculino , Atividade Motora/fisiologia , Neurônios/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Transplantes
2.
Exp Neurol ; 197(1): 70-83, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16321384

RESUMO

Axons show a poor regenerative capacity following traumatic central nervous system (CNS) injury, partly due to the expression of inhibitors of axonal outgrowth, of which Nogo-A is considered the most important. We evaluated the acute expression of Nogo-A, the Nogo-66 receptor (NgR) and the novel small proline-rich repeat protein 1A (SPRR1A, previously undetected in brain), following experimental lateral fluid percussion (FP) brain injury in rats. Immunofluorescence with antibodies against Nogo-A, NgR and SPRR1A was combined with antibodies against the neuronal markers NeuN and microtubule-associated protein (MAP)-2 and the oligodendrocyte marker RIP, while Western blot analysis was performed for Nogo-A and NgR. Brain injury produced a significant increase in Nogo-A expression in injured cortex, ipsilateral external capsule and reticular thalamus from days 1-7 post-injury (P < 0.05) compared to controls. Increased expression of Nogo-A was observed in both RIP- and NeuN positive (+) cells in the ipsilateral cortex, in NeuN (+) cells in the CA3 region of the hippocampus and reticular thalamus and in RIP (+) cells in white matter tracts. Alterations in NgR expression were not observed following traumatic brain injury (TBI). Brain injury increased the extent of SPRR1A expression in the ipsilateral cortex and the CA3 at all post-injury time-points in NeuN (+) cells. The marked increases in Nogo-A and SPRR1A in several important brain regions suggest that although inhibitors of axonal growth may be upregulated, the injured brain is also capable of expressing proteins promoting axonal outgrowth following TBI.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas de Membrana/genética , Proteínas da Mielina/genética , Receptores de Superfície Celular/genética , Animais , Western Blotting , Encéfalo/patologia , Lesões Encefálicas/patologia , Contagem de Células , Proteínas Ricas em Prolina do Estrato Córneo , Densitometria , Lateralidade Funcional/fisiologia , Proteínas Ligadas por GPI , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Tálamo/metabolismo , Tálamo/patologia
3.
Crit Care Med ; 34(2): 492-501, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16424733

RESUMO

OBJECTIVES: Posttraumatic hypotension is believed to increase morbidity and mortality in traumatically brain-injured patients. Using a clinically relevant model of combined traumatic brain injury with superimposed hemorrhagic hypotension in rats, the present study evaluated whether a reduction in mean arterial blood pressure aggravates regional brain edema formation, regional cell death, and neurologic motor/cognitive deficits associated with traumatic brain injury. DESIGN: Experimental prospective, randomized study in rodents. SETTING: Experimental laboratory at a university hospital. SUBJECTS: One hundred nineteen male Sprague-Dawley rats weighing 350-385 g. INTERVENTIONS: Experimental traumatic brain injury of mild to moderate severity was induced using the lateral fluid percussion brain injury model in anesthetized rats (n = 89). Following traumatic brain injury, in surviving animals one group of animals was subjected to pressure-controlled hemorrhagic hypotension, maintaining the mean arterial blood pressure at 50-60 mm Hg for 30 mins (n = 47). The animals were subsequently either resuscitated with lactated Ringer's solution (three times shed blood volume, n = 18) or left uncompensated (n = 29). Other groups of animals included those with isolated traumatic brain injury (n = 34), those with isolated hemorrhagic hypotension (n = 8), and sham-injured control animals receiving anesthesia and surgery alone (n = 22). MEASUREMENTS AND MAIN RESULTS: The withdrawal of 6-7 mL of arterial blood significantly reduced mean arterial blood pressure by 50% without decreasing arterial oxygen saturation or Pao2. Brain injury induced significant cerebral edema (p < .001) in vulnerable brain regions and cortical tissue loss (p < .01) compared with sham-injured animals. Neither regional brain edema formation at 24 hrs postinjury nor the extent of cortical tissue loss assessed at 7 days postinjury was significantly aggravated by superimposed hemorrhagic hypotension. Brain injury-induced neurologic deficits persisted up to 20 wks after injury and were also not aggravated by the hemorrhagic hypotension. Cognitive dysfunction persisted for up to 16 wks postinjury. The superimposition of hemorrhagic hypotension significantly delayed the time course of cognitive recovery. CONCLUSIONS: A single, acute hypotensive event lasting 30 mins did not aggravate the short- and long-term structural and motor deficits but delayed the speed of recovery of cognitive function associated with experimental traumatic brain injury.


Assuntos
Lesões Encefálicas/complicações , Transtornos Cognitivos/etiologia , Hidratação , Hipotensão/complicações , Choque/complicações , Animais , Gasometria , Pressão Sanguínea , Hipotensão/terapia , Masculino , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Choque/terapia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA