Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem J ; 476(2): 179-191, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30404924

RESUMO

Eukaryotic ATP-dependent phosphofructokinases (PFKs) are often considered unidirectional enzymes catalysing the transfer of a phospho moiety from ATP to fructose 6-phosphate to produce ADP and fructose 1,6-bisphosphate. The reverse reaction is not generally considered to occur under normal conditions and has never been demonstrated for any eukaryotic ATP-dependent PFKs, though it does occur in inorganic pyrophosphate-dependent PFKs and has been experimentally shown for bacterial ATP-dependent PFKs. The evidence is provided via two orthogonal assays that all three human PFK isoforms can catalyse the reverse reaction in vitro, allowing determination of kinetic properties. Additionally, the reverse reaction was shown possible for PFKs from three clinically important trypanosomatids; these enzymes are contained within glycosomes in vivo This compartmentalisation may facilitate reversal, given the potential for trypanosomatids to have an altered ATP/ADP ratio in glycosomes compared with the cytosol. The kinetic properties of each trypanosomatid PFK were determined, including the response to natural and artificial modulators of enzyme activity. The possible physiological relevance of the reverse reaction in trypanosomatid and human PFKs is discussed.


Assuntos
Fosfofrutoquinases/química , Proteínas de Protozoários/química , Trypanosoma/enzimologia , Humanos , Isoenzimas , Cinética , Fosfotransferases/química
2.
Biochem J ; 475(10): 1821-1837, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29748232

RESUMO

We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that, within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation Kd is estimated to be ∼0.9 µM with a slow dissociation rate (t1/2 ∼ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Regulação Alostérica , Domínio Catalítico , Proliferação de Células , Cristalografia por Raios X , Humanos , Conformação Proteica , Multimerização Proteica
3.
Biochem J ; 475(20): 3275-3291, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30254098

RESUMO

We show here that the M2 isoform of human pyruvate kinase (M2PYK) is susceptible to nitrosation and oxidation, and that these modifications regulate enzyme activity by preventing the formation of the active tetrameric form. The biotin-switch assay carried out on M1 and M2 isoforms showed that M2PYK is sensitive to nitrosation and that Cys326 is highly susceptible to redox modification. Structural and enzymatic studies have been carried out on point mutants for three cysteine residues (Cys424, Cys358, and Cys326) to characterise their potential roles in redox regulation. Nine cysteines are conserved between M2PYK and M1PYK. Cys424 is the only cysteine unique to M2PYK. C424S, C424A, and C424L showed a moderate effect on enzyme activity with 80, 100, and 140% activity, respectively, compared with M2PYK. C358 had been previously identified from in vivo studies to be the favoured target for oxidation. Our characterised mutant showed that this mutation stabilises tetrameric M2PYK, suggesting that the in vivo resistance to oxidation for the Cys358Ser mutation is due to stabilisation of the tetrameric form of the enzyme. In contrast, the Cys326Ser mutant exists predominantly in monomeric form. A biotin-switch assay using this mutant also showed a significant reduction in biotinylation of M2PYK, confirming that this is a major target for nitrosation and probably oxidation. Our results show that the sensitivity of M2PYK to oxidation and nitrosation is regulated by its monomer-tetramer equilibrium. In the monomer state, residues (in particular C326) are exposed to oxidative modifications that prevent reformation of the active tetrameric form.


Assuntos
Cisteína/metabolismo , Piruvato Quinase/metabolismo , Cristalização , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Nitrosação/fisiologia , Oxirredução , Estrutura Secundária de Proteína , Piruvato Quinase/química
4.
Mol Cell ; 29(4): 525-31, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18313390

RESUMO

MeCP2 is an essential transcriptional repressor that mediates gene silencing through binding to methylated DNA. Binding specificity has been thought to depend on hydrophobic interactions between cytosine methyl groups and a hydrophobic patch within the methyl-CpG-binding domain (MBD). X-ray analysis of a methylated DNA-MBD cocrystal reveals, however, that the methyl groups make contact with a predominantly hydrophilic surface that includes tightly bound water molecules. This suggests that MeCP2 recognizes hydration of the major groove of methylated DNA rather than cytosine methylation per se. The MeCP2-DNA complex also identifies a unique structural role for T158, the residue most commonly mutated in Rett syndrome.


Assuntos
Ilhas de CpG , DNA/química , DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Sequência de Aminoácidos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Cristalografia por Raios X , DNA/genética , Metilação de DNA , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Síndrome de Rett/genética , Alinhamento de Sequência , Timina/química , Timina/metabolismo
5.
Biochem J ; 458(2): 301-11, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24328825

RESUMO

The phosphotransfer mechanism of PYKs (pyruvate kinases) has been studied in detail, but the mechanism of the intrinsic decarboxylase reaction catalysed by PYKs is still unknown. 1H NMR was used in the present study to follow OAA (oxaloacetate) decarboxylation by trypanosomatid and human PYKs confirming that the decarboxylase activity is conserved across distantly related species. Crystal structures of TbPYK (Trypanosoma brucei PYK) complexed with the product of the decarboxylase reaction (pyruvate), and a series of substrate analogues (D-malate, 2-oxoglutarate and oxalate) show that the OAA analogues bind to the kinase active site with similar binding modes, confirming that both decarboxylase and kinase activities share a common site for substrate binding and catalysis. Decarboxylation of OAA as monitored by NMR for TbPYK has a relatively low turnover with values of 0.86 s-1 and 1.47 s-1 in the absence and presence of F26BP (fructose 2,6-bisphosphate) respectively. Human M1PYK (M1 isoform of PYK) has a measured turnover value of 0.50 s-1. The X-ray structures explain why the decarboxylation activity is specific for OAA and is not general for α-oxo acid analogues. Conservation of the decarboxylase reaction across divergent species is a consequence of piggybacking on the conserved kinase mechanism which requires a stabilized enol intermediate.


Assuntos
Piruvato Quinase/química , Piruvato Quinase/metabolismo , Sítios de Ligação/fisiologia , Catálise , Sequência Conservada , Cristalografia por Raios X , Descarboxilação/fisiologia , Ativação Enzimática/fisiologia , Humanos , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Trypanosoma brucei brucei/enzimologia
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1768-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999300

RESUMO

The active site of pyruvate kinase (PYK) is located between the AC core of the enzyme and a mobile lid corresponding to domain B. Many PYK structures have already been determined, but the first `effector-only' structure and the first with PEP (the true natural substrate) are now reported for the enzyme from Trypanosoma brucei. PEP soaked into crystals of the enzyme with bound allosteric activator fructose 2,6-bisphosphate (F26BP) and Mg(2+) triggers a substantial 23° rotation of the B domain `in crystallo', resulting in a partially closed active site. The interplay of side chains with Mg(2+) and PEP may explain the mechanism of the domain movement. Furthermore, it is apparent that when F26BP is present but PEP is absent Mg(2+) occupies a position that is distinct from the two canonical Mg(2+)-binding sites at the active site. This third site is adjacent to the active site and involves the same amino-acid side chains as in canonical site 1 but in altered orientations. Site 3 acts to sequester Mg(2+) in a `priming' position such that the enzyme is maintained in its R-state conformation. In this way, Mg(2+) cooperates with F26BP to ensure that the enzyme is in a conformation that has a high affinity for the substrate.


Assuntos
Magnésio/química , Piruvato Quinase/metabolismo , Rotação , Trypanosoma brucei brucei/enzimologia , Cristalização , Cristalografia por Raios X , Frutosedifosfatos/química , Frutosedifosfatos/metabolismo , Magnésio/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Piruvato Quinase/isolamento & purificação , Especificidade por Substrato
7.
Biochem J ; 448(1): 67-72, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22906073

RESUMO

PYK (pyruvate kinase) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small-molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit LmPYK (Leishmania mexicana PYK) activity in a time- (and dose-) dependent manner, a characteristic of irreversible inhibition. The crystal structure of DBS {4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid} complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS-binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Piruvato Quinase/antagonistas & inibidores , Animais , Arginina/metabolismo , Benzoatos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Leishmania mexicana/enzimologia , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Proteínas Recombinantes/metabolismo , Sacarina/análogos & derivados , Sacarina/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade , Suramina/farmacologia
8.
J Biol Chem ; 286(36): 31232-40, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21733839

RESUMO

Ehrlich's pioneering chemotherapeutic experiments published in 1904 (Ehrlich, P., and Shiga, K. (1904) Berlin Klin. Wochenschrift 20, 329-362) described the efficacy of a series of dye molecules including trypan blue and trypan red to eliminate trypanosome infections in mice. The molecular structures of the dyes provided a starting point for the synthesis of suramin, which was developed and used as a trypanocidal drug in 1916 and is still in clinical use. Despite the biological importance of these dye-like molecules, the mode of action on trypanosomes has remained elusive. Here we present crystal structures of suramin and three related dyes in complex with pyruvate kinases from Leishmania mexicana or from Trypanosoma cruzi. The phenyl sulfonate groups of all four molecules (suramin, Ponceau S, acid blue 80, and benzothiazole-2,5-disulfonic acid) bind in the position of ADP/ATP at the active sites of the pyruvate kinases (PYKs). The binding positions in the two different trypanosomatid PYKs are nearly identical. We show that suramin competitively inhibits PYKs from humans (muscle, tumor, and liver isoenzymes, K(i) = 1.1-17 µM), T. cruzi (K(i) = 108 µM), and L. mexicana (K(i) = 116 µM), all of which have similar active sites. Synergistic effects were observed when examining suramin inhibition in the presence of an allosteric effector molecule, whereby IC(50) values decreased up to 2-fold for both trypanosomatid and human PYKs. These kinetic and structural analyses provide insight into the promiscuous inhibition observed for suramin and into the mode of action of the dye-like molecules used in Ehrlich's original experiments.


Assuntos
Adenosina/metabolismo , Piruvato Quinase/antagonistas & inibidores , Suramina/farmacologia , Azul Tripano/farmacologia , Tripanossomicidas/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Humanos , Concentração Inibidora 50 , Cinética , Leishmania mexicana/enzimologia , Camundongos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Azul Tripano/análogos & derivados , Trypanosoma cruzi/enzimologia
9.
J Biol Chem ; 285(17): 12892-8, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20123988

RESUMO

Allosteric regulation provides a rate management system for enzymes involved in many cellular processes. Ligand-controlled regulation is easily recognizable, but the underlying molecular mechanisms have remained elusive. We have obtained the first complete series of allosteric structures, in all possible ligated states, for the tetrameric enzyme, pyruvate kinase, from Leishmania mexicana. The transition between inactive T-state and active R-state is accompanied by a simple symmetrical 6 degrees rigid body rocking motion of the A- and C-domain cores in each of the four subunits. However, formation of the R-state in this way is only part of the mechanism; eight essential salt bridge locks that form across the C-C interface provide tetramer rigidity with a coupled 7-fold increase in rate. The results presented here illustrate how conformational changes coupled with effector binding correlate with loss of flexibility and increase in thermal stability providing a general mechanism for allosteric control.


Assuntos
Leishmania mexicana/enzimologia , Modelos Químicos , Modelos Moleculares , Proteínas de Protozoários/química , Piruvato Quinase/química , Regulação Alostérica/fisiologia , Animais , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Piruvato Quinase/metabolismo
10.
Nat Commun ; 12(1): 1052, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594070

RESUMO

The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases.


Assuntos
Glicólise/efeitos dos fármacos , Fosfofrutoquinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Trypanosoma/enzimologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Doença Aguda , Regulação Alostérica/efeitos dos fármacos , Animais , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Camundongos , Parasitos/efeitos dos fármacos , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Relação Estrutura-Atividade , Trypanosoma/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-20208146

RESUMO

The inclusion of novel small molecules in crystallization experiments has provided very encouraging results and this method is now emerging as a promising alternative strategy for crystallizing 'problematic' biological macromolecules. These small molecules have the ability to promote lattice formation through stabilizing intermolecular interactions in protein crystals. Here, the use of 1,3,6,8-pyrenetetrasulfonic acid (PTS), which provides a helpful intermolecular bridge between Leishmania mexicana PYK (LmPYK) macromolecules in the crystal, is reported, resulting in the rapid formation of a more stable crystal lattice at neutral pH and greatly improved X-ray diffraction results. The refined structure of the LmPYK-PTS complex revealed the negatively charged PTS molecule to be stacked between positively charged (surface-exposed) arginine side chains from neighbouring LmPYK molecules in the crystal lattice.


Assuntos
Leishmania mexicana/enzimologia , Piruvato Quinase/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Piruvato Quinase/metabolismo , Especificidade por Substrato , Ácidos Sulfônicos/química , Ácidos Sulfônicos/metabolismo
12.
FEBS J ; 287(13): 2847-2861, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31838765

RESUMO

Trypanosomatids possess glycosome organelles that contain much of the glycolytic machinery, including phosphofructokinase (PFK). We present kinetic and structural data for PFK from three human pathogenic trypanosomatids, illustrating intriguing differences that may reflect evolutionary adaptations to differing ecological niches. The activity of Leishmania PFK - to a much larger extent than Trypanosoma PFK - is reliant on AMP for activity regulation, with 1 mm AMP increasing the L. infantum PFK (LiPFK) kcat/K0.5F6P value by 10-fold, compared to only a 1.3- and 1.4-fold increase for T. cruzi and T. brucei PFK, respectively. We also show that Leishmania PFK melts at a significantly lower (> 15 °C) temperature than Trypanosoma PFKs and that addition of either AMP or ATP results in a marked stabilization of the protein. Sequence comparisons of Trypanosoma spp. and Leishmania spp. show that divergence of the two genera involved amino acid substitutions that occur in the enzyme's 'reaching arms' and 'embracing arms' that determine tetramer stability. The dramatic effects of AMP on Leishmania activity compared with the Trypanosoma PFKs may be explained by differences between the T-to-R equilibria for the two families, with the low-melting Leishmania PFK favouring the flexible inactive T-state in the absence of AMP. Sequence comparisons along with the enzymatic and structural data presented here also suggest there was a loss of AMP-dependent regulation in Trypanosoma species rather than gain of this characteristic in Leishmania species and that AMP acts as a key regulator in Leishmania governing the balance between glycolysis and gluconeogenesis.


Assuntos
Monofosfato de Adenosina/metabolismo , Glicólise , Guanosina Trifosfato/metabolismo , Leishmania/enzimologia , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Trypanosoma brucei brucei/enzimologia , Monofosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Evolução Biológica , Domínio Catalítico , Cristalografia por Raios X , Gluconeogênese , Guanosina Trifosfato/química , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade da Espécie , Especificidade por Substrato
13.
J Mol Biol ; 366(4): 1185-98, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17207816

RESUMO

The crystal structure of the ATP-dependent phosphofructokinase (PFK) from Trypanosoma brucei provides the first detailed description of a eukaryotic PFK, and enables comparisons to be made with the crystal structures of bacterial ATP-dependent and PPi-dependent PFKs. The structure reveals that two insertions (the 17-20 and 329-348 loops) that are characteristic of trypanosomatid PFKs, but absent from bacterial and mammalian ATP-dependent PFKs, are located within and adjacent to the active site, and are in positions to play important roles in the enzyme's mechanism. The 90 residue N-terminal extension forms a novel domain that includes an "embracing arm" across the subunit boundary to the symmetry-related subunit in the tetrameric enzyme. Comparisons with the PPi-dependent PFK from Borrelia burgdorferi show that several features thought to be characteristic of PPi-dependent PFKs are present in the trypanosome ATP-dependent PFK. These two enzymes are generally more similar to each other than to the bacterial or mammalian ATP-dependent PFKs. However, there are critical differences at the active site of PPi-dependent PFKs that are sufficient to prevent the binding of ATP. This crystal structure of a eukaryotic PFK has enabled us to propose a detailed model of human muscle PFK that shows active site and other differences that offer opportunities for structure-based drug discovery for the treatment of sleeping sickness and other diseases caused by the trypanosomatid family of protozoan parasites.


Assuntos
Fosfofrutoquinases/química , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Difosfatos/farmacologia , Humanos , Dados de Sequência Molecular , Fosfofrutoquinases/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Difração de Raios X
14.
Bioorg Med Chem ; 16(9): 5050-61, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18387804

RESUMO

The glycolytic pathway has been considered a potential drug target against the parasitic protozoan species of Trypanosoma and Leishmania. We report the design and the synthesis of inhibitors targeted against Trypanosoma brucei phosphofructokinase (PFK) and Leishmania mexicana pyruvate kinase (PyK). Stepwise library synthesis and inhibitor design from a rational starting point identified furanose sugar amino amides as a novel class of inhibitors for both enzymes with IC(50) values of 23microM and 26microM against PFK and PyK, respectively. Trypanocidal activity also showed potency in the low micromolar range and confirms these inhibitors as promising candidates for the development towards the design of anti-trypanosomal drugs.


Assuntos
Inibidores Enzimáticos/farmacologia , Chumbo/química , Leishmania mexicana/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicólise , Concentração Inibidora 50 , Leishmania mexicana/enzimologia , Leishmania mexicana/metabolismo , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Testes de Sensibilidade Parasitária , Fosfofrutoquinases/antagonistas & inibidores , Piruvato Quinase/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-17671358

RESUMO

Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20,000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 A resolution and data were collected to 99.6% completeness at 8.9 A. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 A. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.


Assuntos
Vírus da Hepatite B/química , Proteínas do Nucleocapsídeo/química , Fragmentos de Peptídeos/química , Vírion/química , Cristalização , Cristalografia por Raios X
16.
FEBS Open Bio ; 7(4): 533-549, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28396838

RESUMO

We have established a refined methodology for generating surface plasmon resonance sensor surfaces of recombinant his-tagged human cyclophilin-A. Our orientation-specific stabilisation approach captures his-tagged protein under 'physiological conditions' (150 mm NaCl, pH 7.5) and covalently stabilises it on Ni2+-nitrilotriacetic acid surfaces, very briefly activated for primary amine-coupling reactions, producing very stable and active surfaces (≥ 95% specific activity) of cyclophilin-A. Variation in protein concentration with the same contact time allows straightforward generation of variable density surfaces, with essentially no loss of activity, making the protocol easily adaptable for studying numerous interactions; from very small fragments, ~ 100 Da, to large protein ligands. This new method results in an increased stability and activity of the immobilised protein and allowed us to expand the thermo-kinetic analysis space, and to determine accurate and robust thermodynamic parameters for the cyclophilin-A-cyclosporin-A interaction. Furthermore, the increased sensitivity of the surface allowed identification of a new nonpeptide inhibitor of cyclophilin-A, from a screen of a fragment library. This fragment, 2,3-diaminopyridine, bound specifically with a mean affinity of 248 ± 60 µm. The X-ray structure of this 109-Da fragment bound in the active site of cyclophilin-A was solved to a resolution of 1.25 Å (PDB: 5LUD), providing new insight into the molecular details for a potential new series of nonpeptide cyclophilin-A inhibitors.

17.
J Mol Biol ; 429(20): 3075-3089, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28882541

RESUMO

The gluconeogenic enzyme fructose-1,6-bisphosphatase has been proposed as a potential drug target against Leishmania parasites that cause up to 20,000-30,000 deaths annually. A comparison of three crystal structures of Leishmania major fructose-1,6-bisphosphatase (LmFBPase) along with enzyme kinetic data show how AMP acts as an allosteric inhibitor and provides insight into its metal-dependent reaction mechanism. The crystal structure of the apoenzyme form of LmFBPase is a homotetramer in which the dimer of dimers adopts a planar conformation with disordered "dynamic loops". The structure of LmFBPase, complexed with manganese and its catalytic product phosphate, shows the dynamic loops locked into the active sites. A third crystal structure of LmFBPase complexed with its allosteric inhibitor AMP shows an inactive form of the tetramer, in which the dimer pairs are rotated by 18° relative to each other. The three structures suggest an allosteric mechanism in which AMP binding triggers a rearrangement of hydrogen bonds across the large and small interfaces. Retraction of the "effector loop" required for AMP binding releases the side chain of His23 from the dimer-dimer interface. This is coupled with a flip of the side chain of Arg48 which ties down the key catalytic dynamic loop in a disengaged conformation and also locks the tetramer in an inactive rotated T-state. The structure of the effector site of LmFBPase shows different structural features compared with human FBPases, thereby offering a potential and species-specific drug target.


Assuntos
Monofosfato de Adenosina/metabolismo , Frutose-Bifosfatase/antagonistas & inibidores , Frutose-Bifosfatase/química , Leishmania major/enzimologia , Regulação Alostérica , Coenzimas , Cristalografia por Raios X , Inibidores Enzimáticos , Humanos , Cinética , Manganês/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
18.
PLoS One ; 10(12): e0146164, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717415

RESUMO

We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors.


Assuntos
L-Lactato Desidrogenase/biossíntese , Animais , Automação Laboratorial/métodos , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Cristalografia por Raios X/métodos , Meios de Cultura , Escherichia coli/metabolismo , Isoenzimas/biossíntese , Isoenzimas/isolamento & purificação , L-Lactato Desidrogenase/isolamento & purificação , Lactato Desidrogenase 5 , Ratos , Proteínas Recombinantes/biossíntese , Ressonância de Plasmônio de Superfície/métodos
19.
Chem Commun (Camb) ; (16): 1786-7, 2004 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-15306883

RESUMO

The 1.6 [Angstrom] X-ray crystal structure of [(eta(6)-p-cymene)Ru(lysozyme)Cl(2)], the first of a half-sandwich complex of a protein, shows selective ruthenation of Nepsilon of the imidazole ring of His15.


Assuntos
Complexos Multienzimáticos/química , Muramidase/química , Compostos Organometálicos/química , Proteínas/química , Rutênio/química , Arginina/química , Ácido Aspártico/química , Cristalografia por Raios X , Histidina/química , Imidazóis/química , Modelos Químicos , Muramidase/farmacologia , Compostos Organometálicos/farmacologia , Rutênio/farmacologia
20.
R Soc Open Sci ; 1(1): 140120, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26064527

RESUMO

The transition between the inactive T-state (apoenzyme) and active R-state (effector bound enzyme) of Trypanosoma cruzi pyruvate kinase (PYK) is accompanied by a symmetrical 8° rigid body rocking motion of the A- and C-domain cores in each of the four subunits, coupled with the formation of additional salt bridges across two of the four subunit interfaces. These salt bridges provide increased tetramer stability correlated with an enhanced specificity constant (k cat/S 0.5). A detailed kinetic and structural comparison between the potential drug target PYKs from the pathogenic protists T. cruzi, T. brucei and Leishmania mexicana shows that their allosteric mechanism is conserved. By contrast, a structural comparison of trypanosomatid PYKs with the evolutionarily divergent PYKs of humans and of bacteria shows that they have adopted different allosteric strategies. The underlying principle in each case is to maximize (k cat/S 0.5) by stabilizing and rigidifying the tetramer in an active R-state conformation. However, bacterial and mammalian PYKs have evolved alternative ways of locking the tetramers together. In contrast to the divergent allosteric mechanisms, the PYK active sites are highly conserved across species. Selective disruption of the varied allosteric mechanisms may therefore provide a useful approach for the design of species-specific inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA