Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Glia ; 68(6): 1255-1273, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31894889

RESUMO

The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-ß1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-ß1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.


Assuntos
Ácidos Araquidônicos/farmacologia , Astrócitos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/farmacologia , Oligodendroglia/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Endocanabinoides/farmacologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Ratos , Remielinização/fisiologia
2.
J Neuroinflammation ; 17(1): 88, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192522

RESUMO

BACKGROUND: The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/ß-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche. METHODS: TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni's post-hoc test, or a Student's t test were used to establish statistical significance. RESULTS: The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/ß-Catenin signaling in NSCs promoting an oligodendroglial fate. CONCLUSIONS: We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.


Assuntos
Diferenciação Celular/fisiologia , Microglia/metabolismo , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Proteínas Wnt/metabolismo , Animais , Feminino , Ventrículos Laterais/citologia , Camundongos , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Ratos
3.
J Neurosci ; 37(35): 8385-8398, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28751457

RESUMO

The failure to undergo remyelination is a critical impediment to recovery in multiple sclerosis. Chondroitin sulfate proteoglycans (CSPGs) accumulate at demyelinating lesions creating a nonpermissive environment that impairs axon regeneration and remyelination. Here, we reveal a new role for 2-arachidonoylglycerol (2-AG), the major CNS endocannabinoid, in the modulation of CSPGs deposition in a progressive model of multiple sclerosis, the Theiler's murine encephalomyelitis virus-induced demyelinating disease. Treatment with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-AG degradation in the mouse CNS, modulates neuroinflammation and reduces CSPGs accumulation and astrogliosis around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. Inhibition of 2-AG hydrolysis augments the number of mature oligodendrocytes and increases MBP, leading to remyelination and functional recovery of mice. Our findings establish a mechanism for 2-AG promotion of remyelination with implications in axonal repair in CNS demyelinating pathologies.SIGNIFICANCE STATEMENT The deposition of chondroitin sulfate proteoglycans contributes to the failure in remyelination associated with multiple sclerosis. Here we unveil a new role for 2-arachidonoylglycerol, the major CNS endocannabinoid, in the modulation of chondroitin sulfate proteoglycan accumulation in Theiler's murine encephalomyelitis virus-induced demyelinating disease. The treatment during the chronic phase with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-arachidonoylglycerol degradation in the mouse CNS, modulates neuroinflammation and reduces chondroitin sulfate proteoglycan deposition around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. The increased 2-arachidonoylglycerol tone promotes remyelination in a model of progressive multiple sclerosis ameliorating motor dysfunction.


Assuntos
Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Glicerídeos/farmacologia , Glicerídeos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/patologia , Proteoglicanas/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Camundongos , Esclerose Múltipla/patologia , Neurogênese/efeitos dos fármacos
4.
Glia ; 66(7): 1447-1463, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29484707

RESUMO

The innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking. 2-AG or the inhibition of its hydrolysis diminished the reactivity and number of microglia at the TMEV injection site reducing their morphological complexity and modulating them towards an anti-inflammatory state via CB2 receptors. Indeed, 2-AG dampened the infiltration of immune cells into the CNS and inhibited their egress from the spleen, resulting in long-term beneficial effects at the chronic phase of the disease. Intriguingly, it is not a generalized action over leukocytes since 2-AG increased the presence and suppressive potency of myeloid derived suppressor cells (MDSCs) in the brain resulting in higher apoptotic CD4+ T cells at the injection site. Together, these data suggest a robust modulatory effect in the peripheral and central immunity by 2-AG and highlight the interest of modulating endogenous cannabinoids to regulate CNS inflammatory conditions.


Assuntos
Ácidos Araquidônicos/metabolismo , Infecções por Cardiovirus/imunologia , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Inflamação/imunologia , Microglia/imunologia , Theilovirus , Animais , Ácidos Araquidônicos/administração & dosagem , Encéfalo/imunologia , Encéfalo/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Infecções por Cardiovirus/patologia , Modelos Animais de Doenças , Endocanabinoides/administração & dosagem , Feminino , Glicerídeos/administração & dosagem , Imunidade Inata/imunologia , Inflamação/patologia , Camundongos , Microglia/patologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo
5.
J Neuroinflammation ; 15(1): 64, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29495967

RESUMO

BACKGROUND: Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to restore lost function. Cannabinoids such as 9Δ-THC and CBD are multi-target compounds already introduced in the clinical practice for multiple sclerosis (MS). Semisynthetic cannabinoids are designed to improve bioactivities and druggability of their natural precursors. VCE-004.8, an aminoquinone derivative of cannabidiol (CBD), is a dual PPARγ and CB2 agonist with potent anti-inflammatory activity. Activation of the hypoxia-inducible factor (HIF) can have a beneficial role in MS by modulating the immune response and favoring neuroprotection and axonal regeneration. METHODS: We investigated the effects of VCE-004.8 on the HIF pathway in different cell types. The effect of VCE-004.8 on macrophage polarization and arginase 1 expression was analyzed in RAW264.7 and BV2 cells. COX-2 expression and PGE2 synthesis induced by lipopolysaccharide (LPS) was studied in primary microglia cultures. The efficacy of VCE-004.8 in vivo was evaluated in two murine models of MS such as experimental autoimmune encephalomyelitis (EAE) and Theiler's virus-induced encephalopathy (TMEV). RESULTS: Herein, we provide evidence that VCE-004.8 stabilizes HIF-1α and HIF-2α and activates the HIF pathway in human microvascular endothelial cells, oligodendrocytes, and microglia cells. The stabilization of HIF-1α is produced by the inhibition of the prolyl-4-hydrolase activity of PHD1 and PDH2. VCE-004.8 upregulates the expression of HIF-dependent genes such as erythropoietin and VEGFA, induces angiogenesis, and enhances migration of oligodendrocytes. Moreover, VCE-004.8 blunts IL-17-induced M1 polarization, inhibits LPS-induced COX-2 expression and PGE2 synthesis, and induces expression of arginase 1 in macrophages and microglia. In vivo experiments showed efficacy of VCE-004.8 in EAE and TMEV. Histopathological analysis revealed that VCE-004.8 treatments prevented demyelination, axonal damage, and immune cells infiltration. In addition, VCE-004.8 downregulated the expression of several genes closely associated with MS physiopathology, including those underlying the production of chemokines, cytokines, and adhesion molecules. CONCLUSIONS: This study provides new significant insights about the potential role of VCE-004.8 for MS treatment by ameliorating neuroinflammation and demyelination.


Assuntos
Hipóxia Celular/fisiologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Quinonas/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linhagem Celular Transformada , Movimento Celular/genética , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neovascularização Patológica , Receptor CB2 de Canabinoide/antagonistas & inibidores
6.
Bioconjug Chem ; 29(6): 2021-2027, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29733594

RESUMO

Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT1A receptor in ex vivo samples of different immune system conditions.


Assuntos
Compostos de Boro/química , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Receptor 5-HT1A de Serotonina/análise , Animais , Compostos de Boro/síntese química , Técnicas de Química Sintética , Células Dendríticas/química , Corantes Fluorescentes/síntese química , Humanos , Leucócitos Mononucleares/patologia , Camundongos , Monócitos/química , Esclerose Múltipla/patologia , Linfócitos T/química
7.
J Immunol ; 196(11): 4553-65, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183579

RESUMO

An intronic variant in ANKRD55, rs6859219, is a genetic risk factor for multiple sclerosis, but the biological reasons underlying this association are unknown. We characterized the expression of ANKRD55 in human PBMCs and cell lines. Three ANKRD55 transcript variants (Ensembl isoforms 001, 005, and 007) could be detected in PBMCs and CD4(+) T cells but were virtually absent in CD8(+), CD14(+), CD19(+), and CD56(+) cells. Rs6859219 was significantly associated with ANKRD55 transcript levels in PBMCs and CD4(+) T cells and, thus, coincides with a cis-expression quantitative trait locus. The processed noncoding transcript 007 was the most highly expressed variant in CD4(+) T cells, followed by 001 and 005, respectively, but it was not detected in Jurkat, U937, and SH-SY5Y cell lines. Homozygotes for the risk allele produced more than four times more transcript copies than did those for the protective allele. ANKRD55 protein isoforms 005 and 001 were predominantly located in the nucleus of CD4(+) T cells and Jurkat and U937 cells. ANKRD55 was produced by primary cultures of murine hippocampal neurons and microglia, as well as by the murine microglial cell line BV2, and it was induced by inflammatory stimuli. ANKRD55 protein was increased in the murine mouse model of experimental autoimmune encephalomyelitis. Flow cytometric analysis of CNS-infiltrating mononuclear cells showed that CD4(+) T cells and monocytes expressed ANKRD55 in experimental autoimmune encephalomyelitis mice, with the higher fluorescence intensity found in CD4(+) cells. A low percentage of microglia also expressed ANKRD55. Together, these data support an important role for ANKRD55 in multiple sclerosis and neuroinflammation.


Assuntos
Proteínas de Transporte/genética , Esclerose Múltipla/genética , Animais , Proteínas de Transporte/imunologia , Linhagem Celular , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Fatores de Risco
8.
Angew Chem Int Ed Engl ; 53(50): 13765-70, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25298214

RESUMO

Monoacylglycerol lipase (MAGL) is the enzyme responsible for the inactivation of the endocannabinoid 2-arachidonoylglycerol (2-AG). MAGL inhibitors show analgesic and tissue-protecting effects in several disease models. However, the few efficient and selective MAGL inhibitors described to date block the enzyme irreversibly, and this can lead to pharmacological tolerance. Hence, additional classes of MAGL inhibitors are needed to validate this enzyme as a therapeutic target. Here we report a potent, selective, and reversible MAGL inhibitor (IC50=0.18 µM) which is active in vivo and ameliorates the clinical progression of a multiple sclerosis (MS) mouse model without inducing undesirable CB1 -mediated side effects. These results support the interest in MAGL as a target for the treatment of MS.


Assuntos
Monoacilglicerol Lipases/antagonistas & inibidores , Esclerose Múltipla/tratamento farmacológico , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Camundongos
10.
Glia ; 60(7): 1182-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22535572

RESUMO

Cannabidiol (CBD), the major nonpsychotropic phytocannabinoid, induces apoptosis in both immortalized and primary lymphocytes and monocytes. However, contrasting effects of CBD on the apoptosis between normal and immortalized glial cells have been reported. This study investigated the proapoptotic effect of CBD on primary microglial cells. Treatment of murine primary microglial cultures with CBD resulted in a time- and concentration-dependent induction of apoptosis, as shown by increase in hypodiploid cells and DNA strand breaks, and marked activation of both caspase-8 and -9. Mechanistic studies revealed that antioxidants, including N-acetyl-L-cysteine and glutathione, the G protein-coupled receptor 55 agonist abnormal-CBD and specific antagonists for vanilloid, and CB1 and CB2 cannabinoid receptors did not counteract the apoptosis induced by CBD. In contrast, methyl-ß-cyclodextrin (MCD), a lipid raft disruptor, potently attenuated CBD-induced microglial apoptosis and caspase activation. Furthermore, CBD induced lipid raft coalescence and augmented the expression of GM1 ganglioside and caveolin-1, all of which were attenuated by MCD. Taken together, these results suggest that CBD induces a marked proapoptotic effect in primary microglia through lipid raft coalescence and elevated expression of GM1 ganglioside and caveolin-1.


Assuntos
Apoptose/efeitos dos fármacos , Canabidiol/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Caspases/metabolismo , Caveolina 1/metabolismo , Relação Dose-Resposta a Droga , Microdomínios da Membrana/metabolismo , Camundongos , Microglia/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Glia ; 60(9): 1437-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22653796

RESUMO

The endocannabinoid anandamide (AEA) is released by macrophages and microglia on pathological neuroinflammatory conditions such as multiple sclerosis (MS). CD200 is a membrane glycoprotein expressed in neurons that suppresses immune activity via its receptor (CD200R) mainly located in macrophages/microglia. CD200-CD200R interactions contribute to the brain immune privileged status. In this study, we show that AEA protects neurons from microglia-induced neurotoxicity via CD200-CD200R interaction. AEA increases the expression of CD200R1 in LPS/IFN-γ activated microglia through the activation of CB(2) receptors. The neuroprotective effect of AEA disappears when microglial cells derive from CD200R1(-/-) mice. We also show that engagement of CD200R1 by CD200Fc decreased the production of the proinflammatory cytokines IL-1ß and IL-6, but increased IL-10 in activated microglia. In the chronic phases of Theiler's virus-induced demyelinating disease (TMEV-IDD) the expression of CD200 and CD200R1 was reduced in the spinal cord. AEA-treated animals up-regulated the expression of CD200 and CD200R1, restoring levels found in sham animals together with increased expression of IL-10 and reduced expression of IL-1ß and IL-6. Treated animals also improved their motor behavior. Because AEA up-regulated the expression of CD200R1 in microglia, but failed to enhance CD200 in neurons we suggest that AEA-induced up-regulation of CD200 in TMEV-IDD is likely due to IL-10 as this cytokine increases CD200 in neurons. Our findings provide a new mechanism of action of AEA to limit immune response in the inflamed brain.


Assuntos
Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Ácidos Araquidônicos/uso terapêutico , Encéfalo/metabolismo , Endocanabinoides/uso terapêutico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Receptores de Superfície Celular/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Células Cultivadas , Endocanabinoides/farmacologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de Orexina , Alcamidas Poli-Insaturadas/farmacologia
12.
J Neuroinflammation ; 8: 102, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851608

RESUMO

BACKGROUND: VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB) that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs) in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA) in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV) infection of brain endothelial cells using in vitro and in vivo approaches. METHODS: i) in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii) in vivo: CB(1) receptor deficient mice (Cnr1(-/-)) infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. RESULTS: Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB(1) receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB(1) receptor deficient mice (Cnr1(-/-)), the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1(-/-) mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB(1) receptor exacerbated neuroinflammation. CONCLUSIONS: Our results suggest that CB(1) receptor dependent VCAM-1 inhibition is a novel mechanism for AEA-reduced leukocyte transmigration and contribute to a better understanding of the mechanisms underlying the beneficial role of endocannabinoid system in the Theiler's virus model of MS.


Assuntos
Ácidos Araquidônicos/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/efeitos dos fármacos , Leucócitos/fisiologia , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Theilovirus/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/farmacologia , Adesão Celular/efeitos dos fármacos , Endocanabinoides , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Theilovirus/genética
13.
Aging Cell ; 20(9): e13440, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34355492

RESUMO

Although aggravated multiple sclerosis (MS) disability has been reported in aged patients, the aging impact on immune cells remodeling within the CNS is not well understood. Here, we investigated the influence of aging on immune cells and the neuroinflammatory and neurodegenerative processes that occur in a well-established viral model of progressive MS. We found an anomalous presence of CD4+ T, CD8+ T, B cells, and cells of myeloid lineage in the CNS of old sham mice whereas a blunted cellular innate and adaptive immune response was observed in Theiler's murine encephalomyelitis virus (TMEV) infected old mice. Microglia and macrophages show opposite CNS viral responses regarding cell counts in the old mice. Furthermore, enhanced expression of Programmed Death-ligand 1 (PD-L1) was found in microglia isolated from old TMEV-infected mice and not in isolated CNS macrophages. Immunocytochemical staining of microglial cells confirms the above differences between young and old mice. Age-related axonal loss integrity in the mouse spinal cord was found in TMEV mice, but a less marked neurodegenerative process was present in old sham mice compared with young sham mice. TMEV and sham old mice also display alterations in innate and adaptive immunity in the spleen compared to the young mice. Our study supports the need of new or adapted pharmacological strategies for MS elderly patients.


Assuntos
Axônios/imunologia , Senescência Celular/imunologia , Modelos Animais de Doenças , Esclerose Múltipla/imunologia , Doenças Neuroinflamatórias/imunologia , Animais , Feminino , Camundongos , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias/patologia , Theilovirus/imunologia
14.
Front Cell Neurosci ; 14: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140100

RESUMO

The consistency, efficacy, and safety of cannabis-based medicines have been demonstrated in humans, leading to the approval of the first cannabis-based therapy to alleviate spasticity and pain associated with multiple sclerosis (MS). Indeed, the evidence supporting the therapeutic potential of cannabinoids for the management of pathological events related to this disease is ever increasing. Different mechanisms of action have been proposed for cannabis-based treatments in mouse models of demyelination, such as Experimental Autoimmune Encephalomyelitis (EAE) and Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease (TMEV-IDD). Cells in the immune and nervous system express the machinery to synthesize and degrade endocannabinoids, as well as their CB1 and CB2 receptors, each mediating different intracellular pathways upon activation. Hence, the effects of cannabinoids on cells of the immune system, on the blood-brain barrier (BBB), microglia, astrocytes, oligodendrocytes and neurons, potentially open the way for a plethora of therapeutic actions on different targets that could aid the management of MS. As such, cannabinoids could have an important impact on the outcome of MS in terms of the resolution of inflammation or the potentiation of endogenous repair in the central nervous system (CNS), as witnessed in the EAE, TMEV-IDD and toxic demyelination models, and through other in vitro approaches. In this mini review article, we summarize what is currently known about the peripheral and central effects of cannabinoids in relation to the neuroinflammation coupled to MS. We pay special attention to their effects on remyelination and axon preservation within the CNS, considering the major questions raised in the field and future research directions.

15.
Gut Microbes ; 12(1): 1813532, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900255

RESUMO

A growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation. Probiotics represent oral nontoxic immunomodulatory agents that would exert benefits when using in combination with current MS therapy. Here we investigate the effect of Vivomixx on the gut microbiome and central and peripheral immune responses in a murine model of primary progressive MS. Vivomixx administration was associated with increased abundance of many taxa such as Bacteroidetes, Actinobacteria, Tenericutes and TM7. This was accompanied by a clear improvement of the motor disability of Theiler's virus infected mice; in the CNS Vivomixx reduced microgliosis, astrogliosis and leukocyte infiltration. Notably, the presence of Breg cells (CD19+CD5+CD1dhigh) in the CNS was enhanced by Vivomixx, and while spinal cord gene expression of IL-1ß and IL-6 was diminished, the probiotic promoted IL-10 gene expression. One of the most significant findings was the increased plasma levels of butyrate and acetate levels in TMEV-mice that received Vivomixx. Peripheral immunological changes were subtle but interestingly, the probiotic restricted IL-17 production by Th17-polarized CD4+ T-cells purified from the mesenteric lymph nodes of Theiler's virus infected mice. Our data reinforce the beneficial effects of oral probiotics that would be coadjuvant treatments to current MS therapies.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Sistema Nervoso/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Sistema Nervoso/imunologia , Neuroimunomodulação/efeitos dos fármacos
16.
Front Immunol ; 10: 1374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258540

RESUMO

Gut microbiota dysbiosis has been implicated in MS and other immune diseases, although it remains unclear how manipulating the gut microbiota may affect the disease course. Using a well-established model of progressive MS triggered by intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), we sought to determine whether dysbiosis induced by oral antibiotics (ABX) administered on pre-symptomatic and symptomatic phases of the disease influences its course. We also addressed the effects of microbiota recolonization after ABX withdrawn in the presence or absence of probiotics. Central and peripheral immunity, plasma acetate and butyrate levels, axon damage and motor disability were evaluated. The cocktail of ABX prevented motor dysfunction and limited axon damage in mice, which had fewer CD4+ and CD8+ T cells in the CNS, while gut microbiota recolonization worsened motor function and axonal integrity. The underlying mechanisms of ABX protective effects seem to involve CD4+CD39+ T cells and CD5+CD1d+ B cells into the CNS. In addition, microglia adopted a round amoeboid morphology associated to an anti-inflammatory gene profile in the spinal cord of TMEV mice administered ABX. The immune changes in the spleen and mesenteric lymph nodes were modest, yet ABX treatment of mice limited IL-17 production ex vivo. Collectively, our results provide evidence of the functional relevance of gut microbiota manipulation on the neurodegenerative state and disease severity in a model of progressive MS and reinforce the role of gut microbiota as target for MS treatment.


Assuntos
Antibacterianos/uso terapêutico , Axônios/patologia , Linfócitos B/imunologia , Infecções por Cardiovirus/imunologia , Microbioma Gastrointestinal/imunologia , Transtornos Motores/imunologia , Esclerose Múltipla/imunologia , Probióticos/uso terapêutico , Linfócitos T/imunologia , Theilovirus/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunidade , Ativação Linfocitária , Camundongos , Transtornos Motores/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico
17.
PLoS One ; 13(9): e0202590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231069

RESUMO

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication and as possible therapeutic agents in inflammation-mediated demyelinating diseases, including multiple sclerosis (MS). In the present study, we investigated whether intravenously administered EVs derived from mesenchymal stem cells (MSCs) from human adipose tissue might mediate recovery in Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a progressive model of MS. SJL/J mice were subjected to EV treatment once the disease was established. We found that intravenous EV administration improved motor deficits, reduced brain atrophy, increased cell proliferation in the subventricular zone and decreased inflammatory infiltrates in the spinal cord in mice infected with TMEV. EV treatment was also capable of modulating neuroinflammation, given glial fibrillary acidic protein and Iba-1 staining were reduced in the brain, whereas myelin protein expression was increased. Changes in the morphology of microglial cells in the spinal cord suggest that EVs also modulate the activation state of microglia. The clear reduction in plasma cytokine levels, mainly in the Th1 and Th17 phenotypes, in TMEV mice treated with EVs confirms the immunomodulatory ability of intravenous EVs. According to our results, EV administration attenuates motor deficits through immunomodulatory actions, diminishing brain atrophy and promoting remyelination. Further studies are necessary to establish EV delivery as a possible therapy for the neurodegenerative phase of MS.


Assuntos
Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/citologia , Esclerose Múltipla/terapia , Theilovirus/patogenicidade , Tecido Adiposo/citologia , Administração Intravenosa , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Proteínas da Mielina/metabolismo , Resultado do Tratamento
18.
Chem Biol Interact ; 274: 89-99, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28693884

RESUMO

Rutin is a glycosylated flavonoid present in many fruits and plants that has been demonstrated to have anti-inflammatory and antioxidant properties. However, little is known about the mechanisms underlying microglial activation and its effects on the regulation of cytokines and chemokines associated with inflammatory responses in the central nervous system. In this study we examined the effect of rutin on resting or lipopolysaccharide (LPS)-stimulated microglia and characterized their modulation to an activated M1 phenotype or an alternatively activated M2 phenotype. Microglial cells were treated with rutin (1-100 µM); alternatively, microglial cells were stimulated with LPS and the cells were then treated with rutin (50 µM). The results revealed that rutin treatment was not toxic to microglial cells and induced a dose-dependent increase in microglial proliferation associated with changes in morphology after 24 h of treatment. Rutin also induced microglial activation characterized by an increase in OX-42 positive cells and a large proportion of cells with a CD150/CD206-positive M2 phenotype. Rutin also induced a decrease in the mRNA levels of TNF, IL1ß, IL6 and iNOS, reduced the production of IL6, TNF, and nitric oxide, and increased production of the M2 regulatory cytokine IL10 and arginase. Rutin also significantly inhibited the LPS-induced expression of PTGS2, IL18 and TGFß mRNA. These findings show that rutin has the ability to promote microglial proliferation and induces microglial polarization to the M2 profile when cells are stimulated with LPS. These results point this flavonoid as a possible alternative in the treatment or prevention of neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Microglia/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Rutina/farmacologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Anti-Inflamatórios/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/análise , Flavonoides/química , Flavonoides/farmacologia , Interleucina-18/genética , Interleucina-18/metabolismo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor de Manose , Microglia/citologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Wistar , Rutina/química , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
19.
Mult Scler Relat Disord ; 4(6): 505-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26590655

RESUMO

Sativex(®), an equimolecular combination of Δ(9)-tetrahydrocannabinol-botanical drug substance (Δ(9)-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain. However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components. In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice. We compared the effect of a Sativex-like combination of Δ(9)-THC-BDS (10 mg/kg) and CBD-BDS (10 mg/kg) with Δ(9)-THC-BDS (20 mg/kg) or CBD-BDS (20 mg/kg) administered separately by intraperitoneal administration to EAE mice. Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease. The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS. These effects were completely reproduced by the treatment with Δ(9)-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord. Next, we investigated the potential targets involved in the effects of Δ(9)-THC-BDS by selectively blocking CB(1) or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB(1) receptor antagonist. Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ(9)-THC-BDS acting through CB(1) receptors.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Canabidiol , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos Endogâmicos C57BL , Fotomicrografia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
20.
Curr Pharm Des ; 20(29): 4707-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588829

RESUMO

The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler's virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain.


Assuntos
Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Encéfalo/imunologia , Encefalite/imunologia , Endocanabinoides/fisiologia , Imunidade Inata , Receptores de Superfície Celular/metabolismo , Envelhecimento/imunologia , Doença de Alzheimer/imunologia , Encefalite/terapia , Humanos , Esclerose Múltipla/imunologia , Receptores de Orexina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA