Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8031): 895-904, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169180

RESUMO

For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.


Assuntos
Carcinogênese , Colo , Jejum , Comportamento Alimentar , Intestino Delgado , Poliaminas , Células-Tronco , Animais , Feminino , Masculino , Camundongos , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Colo/citologia , Colo/metabolismo , Colo/patologia , Dieta , Jejum/fisiologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Poliaminas/metabolismo , Biossíntese de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Medição de Risco , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Fatores de Tempo , Comportamento Alimentar/fisiologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo
2.
Anal Chem ; 95(14): 6172-6181, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005395

RESUMO

Novel stationary phases have been emerging recently. A ß-alanine-derived embedded urea and amide group-containing C18 phase (Sil-Ala-C18) was prepared for the first time. The media were packed into a 150 × 2.1 mm HPLC column, and the newly designed column was evaluated with the Tanaka and Neue test protocols in reversed-phase liquid chromatography (RPLC) separation mode. Moreover, it was characterized by the Tanaka test protocol in hydrophilic interaction chromatography (HILIC) separation mode. The new phase was characterized by elemental analysis, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and solid-state 13C cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy at variable temperatures. The chromatographic evaluation involved very good separation of nonpolar shape-constrained isomers, polar and basic compounds in RPLC, and highly polar compounds in HILIC compared to the commercial reference columns. The Sil-Ala-C18 phase was able to separate the challenging ß- and γ-isomers of tocopherol. The phase was also successfully applied for the separation of the isomers of tocopherol (vitamin E) and capsaicinoids from real samples of chili peppers (Capsicum spp.) in RPLC and ascorbic acid (vitamin C) in HILIC.

3.
Compr Rev Food Sci Food Saf ; 22(6): 4302-4354, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37616018

RESUMO

Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.


Assuntos
Lipidômica , Lipídeos , Humanos , Lipidômica/métodos , Ácidos Graxos , Triglicerídeos , Frutas
4.
Anal Bioanal Chem ; 414(22): 6621-6634, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35851410

RESUMO

Because of the central role of fatty acids in biological systems, their accurate quantification is still important. However, the impact of the complex matrix of biologically and clinically relevant samples such as plasma, serum, or cells makes the analysis still challenging, especially, when free non-esterified fatty acids have to be quantified. Here we developed and characterized a novel GC-MS method using pentafluorobenzyl bromide as a derivatization agent and compared different ionization techniques such as atmospheric pressure chemical ionization (APCI), atmospheric pressure chemical photoionization (APPI), and negative ion chemical ionization (NICI). The GC-APCI-MS showed the lowest limits of detection from 30 to 300 nM for a broad range of fatty acids and a similar response for various fatty acids from a chain length of 10 to 20 carbon atoms. This allows the number of internal standards necessary for accurate quantification to be reduced. Moreover, the use of pentafluorobenzyl bromide allows the direct derivatization of free fatty acids making them accessible for GC-MS analysis without labor-intense sample pretreatment.


Assuntos
Pressão Atmosférica , Ácidos Graxos não Esterificados , Ácidos Graxos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plasma
5.
Anal Bioanal Chem ; 414(6): 2117-2130, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34928405

RESUMO

This work presents a comparative study for the analysis of carbohydrates for four common chromatographic methods, each coupled to mass spectrometry. Supercritical fluid chromatography (SFC), hydrophilic interaction liquid chromatography (HILIC), reversed-phase liquid chromatography (RP-LC) and gas chromatography (GC) with detection by triple quadrupole mass spectrometer (QqQ-MS) are compared. It is shown that gas chromatography and reversed-phase liquid chromatography, each after derivatisation, are superior to the other two methods in terms of separation performance. Furthermore, comparing the different working modes of the mass spectrometer, it can be determined that a targeted analysis, i.e. moving from full scan to single ion monitoring (SIM) and multiple reaction monitoring (MRM), results in an improvement in the sensitivity as well as the repeatability of the method, which has deficiencies especially in the analysis using HILIC. Overall, RP-LC-MS in MRM after derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) proved to be the most suitable method in terms of separation performance, sensitivity and repeatability for the analysis of monosaccharides. Detection limits in the nanomolar range were achieved, which corresponds to a mass concentration in the low µg/L range. The applicability of this method to different biological samples was investigated with various herbal liquors, pectins and a human glycoprotein.


Assuntos
Carboidratos , Cromatografia de Fase Reversa , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Espectrometria de Massas/métodos
6.
Anal Bioanal Chem ; 414(18): 5445-5459, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35301579

RESUMO

Cannabis is an ancient plant that has been used for therapeutic and recreational purposes. Nowadays, industrial hemp, a variety with low concentration of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and high concentration of non-psychoactive cannabinoids, is getting more and more interest in the food, pharmaceutical, and cosmetic industry. However, cannabis not only contains cannabinoids as bioactive components but also other metabolites like terpenes and phenolic compounds, and the content of these interesting secondary metabolites greatly differs with the genetic variety of the plant. Due to the huge complexity of composition of the cannabis matrix, in this work, a comprehensive two-dimensional liquid chromatography (LC × LC) method has been developed as a very power separation technique coupling a pentafluorophenyl (PFP) and a C18 in the first and second dimensions. Two industrial hemp strains (cookie and gelato) were analyzed to determine the difference in their content of cannabinoids and phenolic compounds. To do this, a new demodulation process was applied for the first time to transform 2D raw data into 1D data which allowed carrying out the chemometric analysis needed to determine the statistical differences between the hemp strains. The cookie strain presented a total of 41 cannabinoid markers, while the gelato strain presented more representative phenolic compounds, in total 24 phenolic compounds were detected as potential markers of this sample. These differences in the chemical composition could determine the industrial destiny of the different hemp strains.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Dronabinol , Fenóis , Extratos Vegetais/química , Terpenos
7.
Nat Chem Biol ; 14(12): 1133-1139, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429602

RESUMO

Infochemicals play important roles in aquatic ecosystems. They even modify food web interactions, such as by inducing defenses in prey. In one classic but still not fully understood example, the planktonic freshwater crustacean Daphnia pulex forms specific morphological defenses (neckteeth) induced by chemical cues (kairomones) released from its predator, the phantom midge larva Chaoborus. On the basis of liquid chromatography, mass spectrometry, and chemical synthesis, we report here the chemical identity of the Chaoborus kairomone. The biologically active cues consist of fatty acids conjugated to the amino group of glutamine via the N terminus. These cues are involved in Chaoborus digestive processes, which explains why they are consistently released despite the disadvantage for its emitter. The identification of the kairomone may allow in-depth studies on multiple aspects of this inducible defense system.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Dípteros/química , Feromônios/química , Feromônios/farmacologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Glutamina/química , Ensaios de Triagem em Larga Escala/métodos , Larva , Lipídeos/química , Espectrometria de Massas/métodos , Feromônios/administração & dosagem , Relação Estrutura-Atividade
8.
Anal Bioanal Chem ; 412(23): 5743-5757, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32699965

RESUMO

Eicosanoids and other oxylipins play an important role in mediating inflammation as well as other biological processes. For the investigation of their biological role(s), comprehensive analytical methods are necessary, which are able to provide reliable identification and quantification of these compounds in biological matrices. Using charge-switch derivatization with AMPP (N-(4-aminomethylphenyl)pyridinium chloride) in combination with liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS), we developed a non-target approach to analyze oxylipins in plasma, serum, and cells. The developed workflow makes use of an ion mobility resolved fragmentation to pinpoint derivatized molecules based on the cleavage of AMPP, which yields two specific fragment ions. This allows a reliable identification of known and unknown eicosanoids and other oxylipins. We characterized the workflow using 52 different oxylipins and investigated their fragmentation patterns and ion mobilities. Limits of detection ranged between 0.2 and 10.0 nM (1.0-50 pg on column), which is comparable with other state-of-the-art methods using LC triple quadrupole (QqQ) MS. Moreover, we applied this strategy to analyze oxylipins in different biologically relevant matrices, as cultured cells, human plasma, and serum. Graphical abstract.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Oxilipinas/metabolismo , Células CACO-2 , Cromatografia Líquida/métodos , Humanos
9.
Anal Chem ; 91(13): 8025-8035, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31074960

RESUMO

Analysis of oxylipins by liquid chromatography mass spectrometry (LC/MS) is challenging because of the small mass range occupied by this diverse lipid class, the presence of numerous structural isomers, and their low abundance in biological samples. Although highly sensitive LC/MS/MS methods are commonly used, further separation is achievable by using drift tube ion mobility coupled with high-resolution mass spectrometry (DTIM-MS). Herein, we present a combined analytical and computational method for the identification of oxylipins and fatty acids. We use a reversed-phase LC/DTIM-MS workflow able to profile and quantify (based on chromatographic peak area) the oxylipin and fatty acid content of biological samples while simultaneously acquiring full scan and product ion spectra. The information regarding accurate mass, collision-cross-section values in nitrogen (DTCCSN2), and retention times of the species found are compared to an internal library of lipid standards as well as the LIPID MAPS Structure Database by using specifically developed processing tools. Features detected within the DTCCSN2 and m/ z ranges of the analyzed standards are flagged as oxylipin-like species, which can be further characterized using drift-time alignment of product and precursor ions distinctive of DTIM-MS. This not only helps identification by reducing the number of annotations from LIPID MAPS but also guides discovery studies of potentially novel species. Testing the methodology on Salmonella enterica serovar Typhimurium-infected murine bone-marrow-derived macrophages and thrombin activated human platelets yields results in agreement with literature. This workflow has also annotated features as potentially novel oxylipins, confirming its ability in providing further insights into lipid analysis of biological samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eicosanoides/análise , Ácidos Graxos/análise , Oxilipinas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Células Cultivadas , Humanos , Espectrometria de Mobilidade Iônica/métodos , Camundongos Endogâmicos C57BL
10.
Anal Bioanal Chem ; 411(24): 6255-6264, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30535529

RESUMO

Capillary zone electrophoresis (CZE) based on electrophoretic mobility in the liquid phase and ion mobility spectrometry (IMS) based on mobilities in the gas phase are both powerful techniques for the separation of complex samples. Protein glycosylation is one of the most common post-translational modifications associated with a wide range of biological functions and human diseases. Due to their high structural variability, the analysis of glycans still represents a challenging task. In this work, the first on-line coupling of CZE with drift tube ion mobility-mass spectrometry (DTIM-MS) has been perfomed to further improve separation capabilities for the analysis of native and 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled N-glycans. In this way, a complexity of glycan signals was revealed which could not be resolved by these techniques individually, shown for both native and APTS-labeled glycans. Each individual glycan signal separated in CZE exhibited an unexpectedly high number of peaks observed in the IMS dimension. This observation could potentially be explained by the presence of isomeric forms, including different linkages, and/or gas-phase conformers. In addition, the type of sialic acid attached to glycans has a significant impact on the obtained drift time profile. Furthermore, the application of α2-3 neuraminidase enabled the partial assignment of peaks in the arrival time distribution considering their sialic acid linkages (α2-3/α2-6). This work is a showcase for the high potential of CZE-DTIM-MS, which is expected to find various applications in the future. Graphical abstract ᅟ.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Mobilidade Iônica/métodos , Polissacarídeos/análise , Pirenos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Anticorpos Monoclonais/química , Glicosilação , Polissacarídeos/química
11.
Anal Chem ; 90(20): 12042-12050, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30215509

RESUMO

Collision cross section (CCS, Ω) values determined by ion mobility mass spectrometry (IM-MS) provide the study of ion shape in the gas phase and use of these as further identification criteria in analytical approaches. Databases of CCS values for a variety of molecules determined by different instrument types are available. In this study, the comparability of CCS values determined by a drift tube ion mobility mass spectrometer (DTIM-MS) and a traveling wave ion mobility mass spectrometer (TWIM-MS) was investigated to test if a common database could be used across IM techniques. A total of 124 substances were measured with both systems and CCS values of [M + H]+ and [M + Na]+ adducts were compared. Deviations <1% were found for most substances, but some compounds show deviations up to 6.2%, which indicate that CCS databases cannot be used without care independently from the instrument type. Additionally, it was found that for several molecules [2M + Na]+ ions were formed during electrospray ionization, whereas a part of them disintegrates to [M + Na]+ ions after passing through the drift tube and before reaching the TOF region, resulting in two signals in their drift spectrum for the [M + Na]+ adduct. Finally, the impact of different LC-IM-MS settings (solvent composition, solvent flow rate, desolvation temperature, and desolvation gas flow rate) were investigated to test whether they have an influence on the CCS values or not. The results showed that these conditions have no significant impact. Only for karbutilate changes in the drift spectrum could be observed with different solvent types and flow rates using the DTIM-MS system, which could be caused by the protonation at different sites in the molecule.

12.
Artigo em Inglês | MEDLINE | ID: mdl-28215784

RESUMO

The performance of two derivatization and ionization techniques for the quantitative reversed phase liquid chromatography (LC)- mass spectrometry (MS) analysis of hydroxy fatty acids (OH-PUFA) in plasma was evaluated: One used AMPP (N-(4-aminomethylphenyl)pyridinium chloride) leading to a positive charged amid-derivate which can be detected by electrospray ionization (ESI)-MS. Second yielded penta fluorobenzyl bromide (PFB) ester derivates allowing detection in electron capture atmospheric pressure chemical ionization (ecAPCI)-MS. The sensitivity of detection of a comprehensive set of hydroxy fatty acids of n6- and n3- poly unsaturated fatty acids was investigated. On the SCIEX3200 MS the applied PFB derivatization led to poor limits of detection (LOD) of 10-100nM (0.1-1pmol/0.03-0.3ng on column). By contrast, AMPP derivatization led to a similar sensitivity compared to the standard ESI(-) of non derivatized analytes (LOD about 1nM (10fmol/3pg on column)). For several analytes, including 9-HETE, 11-HETE and 17-HDHA the AMPP derivatization improved sensitivity enabling their detection in human plasma. However, precision was reduced by AMPP derivatization and variation in IS recovery indicated a strong matrix influence on the MS-signal. In sum, with the instrumentation used, neither of these derivatization methods improves in our hands the LC-MS based quantification of oxylipins.


Assuntos
Cromatografia Líquida/métodos , Oxilipinas/antagonistas & inibidores , Oxilipinas/química , Espectrometria de Massas em Tandem/métodos , Análise Química do Sangue , Humanos , Oxilipinas/sangue , Oxilipinas/isolamento & purificação
13.
J Chromatogr A ; 1717: 464688, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38354595

RESUMO

Pentafluorophenyl (PFP) stationary phase is one of the most important phases after the C18 phase in terms of its applications. Three embedded polar groups (EPG)-containing stationary phases were newly synthesized to act the EPGs as additional interaction sites. The silica surface was initially modified with (3-aminopropyl)trimethoxysilane (APS). The APS-modified silicas were coupled with 2,3,4,5,6-pentafluorobenzoic acid, 2,3,4,5,6-pentafluorophenylacetic acid, and 2,3,4,5,6-pentafluoro-anilino(oxo)acetic acid to obtain Sil-PFP-BA, Sil-PFP-AA, and Sil-PFP-AN phases, respectively. The new phases were characterized by elemental analysis, ATR-FTIR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The phases were evaluated with the Tanaka and Neue tests in reversed-phase liquid chromatography (RPLC). In addition, they were characterized as hydrophilic phases by the Tanaka test protocol used in hydrophilic interaction chromatography (HILIC) separation mode. The Sil-PFP-AA phase showed the highest molecular shape selectivity in RPLC, while Sil-PFP-AN achieved the highest separability in HILIC compared to the commercial PFP reference column. The Sil-PFP-AA phase was successfully applied for the analysis of capsaicinoids from real samples of fresh chili peppers (Capsicum spp.) in RPLC and the Sil-PFP-AN phase for vitamin C (ascorbic acid) in HILIC.


Assuntos
Cromatografia de Fase Reversa , Dióxido de Silício , Cromatografia de Fase Reversa/métodos , Dióxido de Silício/química , Vitaminas , Interações Hidrofóbicas e Hidrofílicas
14.
J Chromatogr A ; 1738: 465475, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39488880

RESUMO

The biosynthesis and homeostasis of cholesterol are essential for cellular function. Cholesterol is a major lipid with multiple roles in membrane stability, signaling, or as a precursor for other molecules. Because of the structural similarity of the sterols involved in the biosynthesis, their accurate identification and quantification is still challenging. Moreover, the huge difference in the concentration of cholesterol and its precursors can cause interferences during the detection. To overcome these problems, a heart-cut liquid chromatographic method was developed by evaluating 38 different columns to achieve optimal separation. The method efficiently separates all sterol biosynthesis intermediates, with detection limits in the low nmol/L-range and an upper limit of quantification of 9 mmol/L for cholesterol by using triple quadrupole mass spectrometric detection. Investigation of lung carcinoma cells treated with statins demonstrated the capability to detect a biological response, showing inhibition of sterol synthesis. This technique offers a robust tool for studying cholesterol biosynthesis and its role in disease.

15.
Sci Adv ; 10(44): eadk8801, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39485847

RESUMO

Mitochondrial DNA (mtDNA) mutations are frequent in cancer, yet their precise role in cancer progression remains debated. To functionally evaluate the impact of mtDNA variants on tumor growth and metastasis, we developed an enhanced cytoplasmic hybrid (cybrid) generation protocol and established isogenic human melanoma cybrid lines with wild-type mtDNA or pathogenic mtDNA mutations with partial or complete loss of mitochondrial oxidative function. Cybrids with homoplasmic levels of pathogenic mtDNA reliably established tumors despite dysfunctional oxidative phosphorylation. However, these mtDNA variants disrupted spontaneous metastasis from primary tumors and reduced the abundance of circulating tumor cells. Migration and invasion of tumor cells were reduced, indicating that entry into circulation is a bottleneck for metastasis amid mtDNA dysfunction. Pathogenic mtDNA did not inhibit organ colonization following intravenous injection. In heteroplasmic cybrid tumors, single-cell analyses revealed selection against pathogenic mtDNA during melanoma growth. Collectively, these findings experimentally demonstrate that functional mtDNA is favored during melanoma growth and supports metastatic entry into the blood.


Assuntos
DNA Mitocondrial , Melanoma , Mutação , Metástase Neoplásica , DNA Mitocondrial/genética , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Linhagem Celular Tumoral , Animais , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Movimento Celular/genética
16.
Nat Cancer ; 5(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286827

RESUMO

Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Insulina , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
17.
J Am Soc Mass Spectrom ; 34(11): 2538-2546, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751542

RESUMO

The position of double bonds in unsaturated fatty acids is strongly connected to their biological effects, but their analytical characterization is still challenging. However, the ionization of unsaturated fatty acids by a GC-APCI leads to regiospecific in-source fragment ions, which can be used to identify the double bond position. The fragment ions are oxidized species that occur mostly at the double bond closest to the carboxylic acid group. This effect can be further promoted by using benzaldehyde as a gas-phase reactant. This allows the identification of the Δ-notation of the fatty acid, and based on additional information such as m/z and retention time, it is possible to annotate the corresponding fatty acid. The developed method also enables the quantification of fatty acids in one step with high selectivity and sensitivity. Moreover, rare fatty acids can be identified in suspected target approaches that are often not available as standards. This was demonstrated by analyzing fish oil samples that provide a complex mixture of highly unsaturated fatty acids and by identifying rare fatty acids such as hexadecatetraenoic acid (FA 16:4 Δ6).


Assuntos
Elétrons , Ácidos Graxos , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos Insaturados , Íons
18.
Anal Chim Acta ; 1238: 340353, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464440

RESUMO

The use of atmospheric pressure ionization (API) sources has become very popular for gas chromatography-mass spectrometry (GC-MS) determinations. GC-API-MS shows important advantages over traditional vacuum ionization sources such as a lower fragmentation preserving the molecular or quasi-molecular ion, the combination of GC separations with advanced mass spectrometers typically developed for liquid chromatography (LC) systems, a significantly higher sensitivity, or the reduction of costs due to the capability to use the same MS for both LC- and GC- couplings. For these reasons, the development of new API sources and GC-API-MS platforms has exponentially increased during the last years. Thus, this review is mainly focused on the last advances in GC-API-MS instrumentation. New setups and couplings on extensively reported API techniques as well as the development of new API sources for GC-MS coupling are thoroughly discussed. Moreover, novel ionization strategies have been reviewed to overcome some of the drawbacks of GC-API-MS methodologies.


Assuntos
Pressão Atmosférica , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Vácuo
19.
Anal Chim Acta ; 1238: 340379, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464441

RESUMO

The application of atmospheric pressure ionization (API) sources in gas chromatography-mass spectrometry (GC-MS) determinations is becoming more popular since they have shown great capabilities to sort out the main drawbacks of vacuum ionization techniques like electron ionization (EI) and chemical ionization (CI). The development of new API techniques and set-ups have grown in the last decades, opening the field of GC-MS to new applications and facing some of the major issues in current analytical methodologies such as the requirement of a compromise between sensitivity and selectivity. Thus, this review is mainly focused on the use of GC-API-MS in different application fields such as food analysis (food safety and food metabolomics), environmental analysis, clinical analysis, drug and pharmaceutical analysis, and petroleomics, among others. The methodologies have been critically reviewed to compare the performance of different API sources and approaches, highlighting the main contributions to overcoming some of the major limitations of the current methodologies as well as the new perspectives that GC-API-MS might open in the different fields.


Assuntos
Pressão Atmosférica , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas , Vácuo , Movimento Celular
20.
ACS Appl Mater Interfaces ; 15(46): 54176-54184, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37949437

RESUMO

Column purchasing cost is an important issue for an analyst to analyze complex sample matrices. Here, we report the development of an amino acid (ß-alanine)-derived stationary phase (Sil-Ala-C12) with strategic and effective interaction sites (amide and urea as embedded polar groups with C12 alkyl chain) able to separate various kinds of analytes. Owing to the balanced hydrophobicity and hydrophilicity of the phase, it showed exceptional separation abilities in both reversed-phase high-performance liquid chromatography (RP-HPLC) as a hydrophobic phase and hydrophilic interaction chromatography (HILIC) as a hydrophilic phase. Remarkably, the baseline separation was achieved for the challenging ß- and γ-isomers of tocopherol. Usually, three columns such as pentafluorophenyl or C30, C18, and sulfobetaine HILIC are required for the analysis of vitamin E, capsaicinoids, and vitamin C in chili peppers (Capsicum spp.), respectively. However, only Sil-Ala-C12 was able to separate these analytes. A single column can serve 3-4 purposes, which suggests that Sil-Ala-C12 had the potential to reduce column purchasing costs.


Assuntos
Cromatografia de Fase Reversa , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Amidas/química , beta-Alanina , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA