Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012441

RESUMO

Antimicrobial resistance is a public health burden with worldwide impacts and was recently identified as one of the major causes of death in 2019. Fosfomycin is an antibiotic commonly used to treat urinary tract infections, and resistance to it in Enterobacteriaceae is mainly due to the metalloenzyme FosA3 encoded by the fosA3 gene. In this work, we adapted a CRISPR-Cas9 system named pRE-FOSA3 to restore the sensitivity of a fosA3+ Escherichia coli strain. The fosA3+ E. coli strain was generated by transforming synthetic fosA3 into a nonpathogenic E. coli TOP10. To mediate the fosA3 disruption, two guide RNAs (gRNAs) were selected that used conserved regions within the fosA3 sequence of more than 700 fosA3+ E. coli isolates, and the resensitization plasmid pRE-FOSA3 was assembled by cloning the gRNA into pCas9. gRNA_195 exhibited 100% efficiency in resensitizing the bacteria to fosfomycin. Additionally, the edited strain lost the ampicillin resistance encoded in the same plasmid containing the synthetic fosA3 gene, despite not being the CRISPR-Cas9 target, indicating plasmid clearance. The in vitro analysis presented here points to a path that can be explored to assist the development of effective alternative methods of treatment against fosA3+ bacteria.


Assuntos
Infecções por Escherichia coli , Fosfomicina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Infecções por Escherichia coli/microbiologia , Fosfomicina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , RNA Guia de Cinetoplastídeos , beta-Lactamases/genética
2.
Parasitol Res ; 113(6): 2323-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24760627

RESUMO

Trypanosoma cruzi has a complex life cycle where the infective forms for the vertebrate host are trypomastigotes and amastigotes. Both forms invade and lyse their parasitophorous vacuole (PV) membrane, entering into the cytoplasm of its host cells. Galectin-3 (Gal-3) is a protein abundantly distributed in macrophages and epithelial cells. Previous studies demonstrated that Gal-3 binds to a 45KDa mucin of trypomastigotes surface, enhancing its adhesion to the extracellular matrix and even its entry into cells. Gal-3 has another novel cytoplasmic function recently described: a vacuole lyses marker in intracellular bacteria. Considering (1) the importance of Gal-3 during T. cruzi early infection and (2) the importance of T. cruzi PV lyses for parasite differentiation and replication, this study intended to explore a possible recruitment of structures containing Gal-3 (G3CSs) to T. cruzi PVs. Microscopy analyses showed these G3CSs around PVs after 30 and 90 min of amastigotes and trypomastigotes infection, respectively. This recruitment was specific for T. cruzi PVs since we did not observe the same distribution at macrophages vacuoles containing fluorescent microspheres (FM). Concomitantly, this study intended to analyze the participation of actin cytoskeleton in T. cruzi PV maturation. We observed that actin filaments form a "belt-like" structure around trypomastigotes and amastigotes PVs, also labeled for Gal-3. At the time proposed for PV lysis, we observed an actin disassembling while LAMP-1 was recruited to PVs membrane. However, this pattern was maintained in macrophages derived from Gal-3 knockout mice, revealing that the actin belt structure forms independently from Gal-3. Taken together, these data suggest that G3CSs are recruited to vicinity of T. cruzi PV and that actin filaments localize and remain around T. cruzi PVs until the time of its lysis.


Assuntos
Doença de Chagas/parasitologia , Galectina 3/metabolismo , Macrófagos Peritoneais/parasitologia , Trypanosoma cruzi/fisiologia , Vacúolos/parasitologia , Animais , Células Cultivadas , Doença de Chagas/imunologia , Galectina 3/genética , Camundongos , Camundongos Knockout
3.
Life (Basel) ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37763203

RESUMO

Giardia intestinalis is a flagellated unicellular protozoan that colonizes the small intestine, causing the diarrheal disease called giardiasis. The production of extracellular vesicles (EVs) by G. intestinalis and the role of these EVs in the parasite's interaction with the host have been described. According to biogenesis, EVs are grouped mainly into large (microvesicles-derived from the plasma membrane) and small (exosomes-derived from multivesicular bodies). Populations of EVs are heterogeneous, and improved methods to separate and study them are needed to understand their roles in cell physiology and pathologies. This work aimed to enrich the large extracellular vesicles (LEVs) of G. intestinalis in order to better understand the roles of these vesicles in the interaction of the parasite with the host. To achieve the enrichment of the LEVs, we have modified our previously described method and compared it by protein dosage and using Nano tracking analysis. Giardia intestinalis vesiculation was induced by incubation in a TYI-S-33 medium without serum, to which 1 mM of CaCl2 was added at 37 °C for 1 h. Then, the supernatant was centrifuged at 15,000× g for 1 h (15 K 1 h pellet), 15,000× g for 4 h (15 K 4 h pellet) and 100,000× g for 1.5 h (100 K 1h30 pellet). The pellet (containing EVs) was resuspended in 1× PBS and stored at 4 °C for later analysis. The EVs were quantified based on their protein concentrations using the Pierce BCA assay, and by nanoparticle tracking analysis (NTA), which reports the concentration and size distribution of the particles. The NTA showed that direct ultracentrifugation at 100,000× g for 1.5 h and centrifugation at 15,000× g for 4 h concentrated more EVs compared to centrifugation at 15,000× g for 1 h. Additionally, it revealed that centrifugation at 15,000× g 4 h was able to concentrate at the same particle concentration levels as a direct ultracentrifugation at 100,000× g for 1.5 h. As for the enrichment of LEVs, the NTA has shown a higher concentration of LEVs in direct ultracentrifugation at 100,000× g for 1.5 h, and in centrifugation at 15,000× g for 4 h, compared to centrifugation at 15,000× g for 1 h. Our results have shown that the most used method at 15,000× g for 1 h is not enough to obtain a representative population of large EVs, and we suggest that LEVs released by G. intestinalis can be better enriched by direct ultracentrifugation at 100,000× g for 1.5 h, or by centrifugation at 15,000× g for 4 h.

4.
J Biomed Mater Res B Appl Biomater ; 111(8): 1488-1498, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36880533

RESUMO

NiFeMo alloy nanoparticles were synthesized by co-precipitation in the presence of organic additives. Nanoparticles thermal evolution shows that there is a significant increase in the average size (from 28 to 60 nm), consolidating a crystalline structure of the same type as the Ni3 Fe phase but with lattice parameter a = 0.362 nm. Measurements of magnetic properties follow this morphological and structural evolution increasing saturation magnetization (Ms) by 578% and reducing remanence magnetization (Mr) by 29%. Cell viability assays on as-synthesized revealed that nanoparticles (NPs) are not cytotoxic up to a concentration of 0.4 µg/mL for both non-tumorigenic (fibroblasts and macrophages) and tumor cells (melanoma).


Assuntos
Nanopartículas , Temperatura , Nanopartículas/química , Magnetismo , Fibroblastos , Fenômenos Magnéticos
5.
Mol Microbiol ; 79(1): 50-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21166893

RESUMO

Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases (PDEs). Trypanosoma cruzi, the causative agent of Chagas disease, encodes four different PDE families. One of these PDEs, T. cruzi PDE C2 (TcrPDEC2) has been characterized as a FYVE domain containing protein. Here, we report a novel role for TcrPDEC2 in osmoregulation in T. cruzi and reveal the relevance of its FYVE domain. Our data show that treatment of epimastigotes with TcrPDEC2 inhibitors improves their regulatory volume decrease, whereas cells overexpressing this enzyme are unaffected by the same inhibitors. Consistent with these results, TcrPDEC2 localizes to the contractile vacuole complex, showing strong labelling in the region corresponding to the spongiome. Furthermore, transgenic parasites overexpressing a truncated version of TcrPDEC2 without the FYVE domain show a failure in its targeting to the contractile vacuole complex and a marked decrease in PDE activity, supporting the importance of this domain to the localization and activity of TcrPDEC2. Taking together, the results here presented are consistent with the importance of the cyclic AMP signalling pathway in regulatory volume decrease and implicate TcrPDEC2 as a specifically localized PDE involved in osmoregulation in T. cruzi.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/fisiologia , Equilíbrio Hidroeletrolítico , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Expressão Gênica , Microscopia Imunoeletrônica , Estrutura Terciária de Proteína , Vacúolos/química
6.
Front Cell Infect Microbiol ; 12: 1044665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699729

RESUMO

Introduction: Leishmaniasis is a neglected tropical disease, with approximately 1 million new cases and 30,000 deaths reported every year worldwide. Given the lack of adequate medication for treating leishmaniasis, drug repositioning is essential to save time and money when searching for new therapeutic approaches. This is particularly important given leishmaniasis's status as a neglected disease. Available treatments are still far from being fully effective for treating the different clinical forms of the disease. They are also administered parenterally, making it challenging to ensure complete treatment, and they are extremely toxic, in some cases, causing death. Triclabendazole (TCBZ) is a benzimidazole used to treat fasciolosis in adults and children. It presents a lower toxicity profile than amphotericin B (AmpB) and is administered orally, making it an attractive candidate for treating other parasitoses. The mechanism of action for TCBZ is not yet well understood, although microtubules or polyamines could potentially act as a pharmacological target. TCBZ has already shown antiproliferative activity against T. cruzi, T. brucei, and L. infantum. However, further investigations are still necessary to elucidate the mechanisms of action of TCBZ. Methods: Cytotoxicity assay was performed by MTT assay. Cell inhibition (CI) values were obtained according to the equation CI = (O.D treatment x 100/O.D. negative control). For Infection evaluation, fixated cells were stained with Hoechst and read at Operetta High Content Imaging System (Perkin Elmer). For growth curves, cell culture absorbance was measured daily at 600 nm. For the synergism effect, Fractional Inhibitory Concentrations (FICs) were calculated for the IC50 of the drugs alone or combined. Mitochondrial membrane potential (DYm), cell cycle, and cell death analysis were evaluated by flow cytometry. Reactive oxygen species (ROS) and lipid quantification were also determined by fluorimetry. Treated parasites morphology and ultrastructure were analyzed by electron microscopy. Results: The selectivity index (SI = CC50/IC50) of TCBZ was comparable with AmpB in promastigotes and amastigotes of Leishmania amazonensis. Evaluation of the cell cycle showed an increase of up to 13% of cells concentrated in S and G2, and morphological analysis with scanning electron microscopy showed a high frequency of dividing cells. The ultrastructural analysis demonstrated large cytoplasmic lipid accumulation, which could suggest alterations in lipid metabolism. Combined administration of TCBZ and AmpB demonstrated a synergistic effect in vitro against intracellular amastigote forms with cSFICs of 0.25. Conclusions: Considering that TCBZ has the advantage of being inexpensive and administrated orally, our results suggest that TCBZ, combined with AmpB, is a promising candidate for treating leishmaniasis with reduced toxicity.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Criança , Humanos , Anfotericina B , Triclabendazol/farmacologia , Triclabendazol/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/parasitologia , Lipídeos/farmacologia
7.
J Eukaryot Microbiol ; 58(5): 416-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21699625

RESUMO

The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles, and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites.


Assuntos
Eimeria/química , Organelas/química , Organelas/metabolismo , Sequência de Aminoácidos , Eimeria/genética , Eimeria/metabolismo , Eimeria/ultraestrutura , Dados de Sequência Molecular , Organelas/genética , Organelas/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
8.
Parasit Vectors ; 14(1): 599, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886876

RESUMO

BACKGROUND: Leishmania infantum is the most important etiological agent of visceral leishmaniasis in the Americas and Mediterranean region, and the dog is the main host. Miltefosine was authorized to treat canine leishmaniasis (CanL) in Brazil in 2017, but there is a persistent fear of the emergence of parasites resistant not only to this drug but, through cross-resistance mechanisms, also to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are drivers of parasite virulence. In this context, the aim of this study was to analyze the impact of treating a dog with miltefosine and allopurinol on the generation of parasites resistant to miltefosine, amphotericin B and meglumine antimoniate. METHODS: In vitro susceptibility tests were conducted against miltefosine, amphotericin B and meglumine antimoniate with T0 (parasites isolated from a dog before treatment with miltefosine plus allopurinol), T1 (after 1 course of treatment) and T2 (after 2 courses of treatment) isolates. The rates of cell proliferation, infectivity and metacyclogenesis of the isolates were also evaluated. RESULTS: The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. An increasing trend in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. CONCLUSION: The data indicates an increased L. infantum resistance to miltefosine and amphotericin B after the treatment of a dog with miltefosine plus allopurinol. Further studies with a larger number of L. infantum strains isolated from dogs with varied immune response profiles and undergoing different treatment regimes, are advocated.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Doenças do Cão/parasitologia , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Fosforilcolina/análogos & derivados , Alopurinol/uso terapêutico , Animais , Antiprotozoários/uso terapêutico , Doenças do Cão/tratamento farmacológico , Cães , Resistência a Medicamentos , Feminino , Leishmaniose Visceral/tratamento farmacológico , Antimoniato de Meglumina/uso terapêutico , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico
9.
PLoS One ; 16(1): e0245882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507972

RESUMO

Butanolides have shown a variety of biological effects including anti-inflammatory, antibacterial, and antiprotozoal effects against certain strains of Trypanosoma cruzi. Considering the lack of an effective drug to treat T. cruzi infections and the prominent results obtained in literature with this class of lactones, we investigated the anti-T. cruzi activity of five butanolides isolated from two species of Lauraceae, Aiouea trinervis and Mezilaurus crassiramea. Initially, the activity of these compounds was evaluated on epimastigote forms of the parasite, after a treatment period of 4 h, followed by testing on amastigotes, trypomastigotes, and mammalian cells. Next, the synergistic effect of active butanolides against amastigotes was evaluated. Further, metacyclogenesis inhibition and infectivity assays were performed for the most active compound, followed by ultrastructural analysis of the treated amastigotes and trypomastigotes. Among the five butanolides studied, majoranolide and isoobtusilactone A were active against all forms of the parasite, with good selectivity indexes in Vero cells. Both butanolides were more active than the control drug against trypomastigote and epimastigote forms and also had a synergic effect on amastigotes. The most active compound, isoobtusilactone A, which showed activity against all tested strains inhibited metacyclogenesis and infection of new host cells. In addition, ultrastructural analysis revealed that this butanolide caused extensive damage to the mitochondria of both amastigotes and trypomastigotes, resulting in severe morphological changes in the infective forms of the parasite. Altogether, our results highlight the potential of butanolides against the etiologic agent of Chagas disease and the relevance of isoobtusilactone A as a strong anti-T. cruzi drug, affecting different events of the life cycle and all evolutionary forms of parasite after a short period of exposure.


Assuntos
Alcanos/farmacologia , Lactonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Chlorocebus aethiops , Sinergismo Farmacológico , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura , Células Vero
10.
Virus Evol ; 7(2): veab105, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35310294

RESUMO

Genomic and epidemiological surveillance are paramount for the discovery of new viruses with the potential to cross species barriers. Here, we present a new member of the genus Alphavirus found in Trichoprosopon and Wyeomia mosquitoes, tentatively named Pirahy virus (PIRAV). PIRAV was isolated from mosquito pools collected in a rural area of Piraí do Sul, South Brazil. In vitro assays revealed that PIRAV replicates and causes cytopathic effects in vertebrate cell lines such as Vero E6, SH-SY5Y, BHK-21 and UMNSAH/DF-1. Genomic signature analysis supports these results showing a dinucleotide and codon usage balance compatible with several hosts. Phylogenetic analyses placed PIRAV basal to the Venezuelan equine encephalitis complex. Genome analyses, electron microscopy, and biological characterization show findings that may alert for the emergence of a new arbovirus in South America.

11.
Rev Soc Bras Med Trop ; 54: e0850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886821

RESUMO

INTRODUCTION: Electron microscopy (EM) is a rapid and effective tool that can be used to create images of a whole spectrum of virus-host interactions and, as such, has long been used in the discovery and description of viral mechanisms. METHODS: Electron microscopy was used to evaluate the pulmonary pathologies of postmortem lung sections from three patients who died from infection with SARS-associated coronavirus 2 (SARS-CoV-2), a new member of the Coronaviridae family. RESULTS: Diffuse alveolar damage (DAD) was predominant in all three patients. The early exudative stage was characterized principally by edema and extravasation of red blood cells into the alveolar space with injury to the alveolar epithelial cells; this was followed by detachment, apoptosis, and necrosis of type I and II pneumocytes. The capillaries exhibited congestion, exposure of the basement membrane from denuded endothelial cells, platelet adhesion, fibrin thrombi, and rupture of the capillary walls. The proliferative stage was characterized by pronounced proliferation of type II alveolar pneumocytes and multinucleated giant cells. The cytopathic effect of SARS-CoV-2 was observed both in degenerated type II pneumocytes and freely circulating in the alveoli, with components from virions, macrophages, lymphocytes, and cellular debris. CONCLUSIONS: Viral particles consistent with the characteristics of SARS-CoV-2 were observed mainly in degenerated pneumocytes, in the endothelium, or freely circulating in the alveoli. In the final stage of illness, the alveolar spaces were replaced by fibrosis.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil , Células Endoteliais , Humanos , Pulmão , Microscopia Eletrônica de Transmissão
12.
Eur J Pharm Biopharm ; 157: 221-232, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33130338

RESUMO

Gold nanoparticle (AuNP)-based systems have been extensively investigated as diagnostic and therapeutic agents due to their tunable properties and easy surface functionalization. Upon cell uptake, AuNPs present an inherent cell impairment potential based on organelle and macromolecules damage, leading to cell death. Such cytotoxicity is concentration-dependent and completely undesirable, especially if unspecific. However, under non-cytotoxic concentrations, internalized AuNPs could potentially weaken cells and act as antitumor agents. Therefore, this study aimed to investigate the antitumor effect of ultrasmall AuNPs (~3 nm) stabilized by the anionic polysaccharide gum arabic (GA-AuNPs). Other than intrinsic cytotoxicity, the focus was downregulation of cancer hallmarks of aggressive tumors, using a highly metastatic model of melanoma. We first demonstrated that GA-AuNPs showed excellent stability under biological environment. Non-cytotoxic concentrations to seven different cell lines, including tumorigenic and non-tumorigenic cells, were determined by standard 2D in vitro assays. Gold concentrations ≤ 2.4 mg L-1 (16.5 nM AuNPs) were non-cytotoxic and therefore chosen for further analyses. Cells exposed to GA-AuNPs were uptaken by melanoma cells through endocytic processes. Next we described remarkable biological properties using non-cytotoxic concentrations of this nanomaterial. Invasion through an extracellular matrix barrier as well as 3D growth capacity (anchorage-independent colony formation and spheroids growth) were negatively affected by 2.4 mg L-1 GA-AuNPs. Additionally, exposed spheroids showed morphological changes, suggesting that GA-AuNPs could penetrate into the preformed tumor and affect its integrity. All together these results demonstrate that side effects, such as cytotoxicity, can be avoided by choosing the right concentration, nevertheless, preserving desirable effects such as modulation of key tumor cell malignancy features.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Compostos de Ouro/farmacologia , Melanoma Experimental/tratamento farmacológico , Nanopartículas Metálicas , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estabilidade de Medicamentos , Endocitose , Compostos de Ouro/química , Compostos de Ouro/metabolismo , Compostos de Ouro/toxicidade , Goma Arábica/química , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Nanomedicina , Invasividade Neoplásica , Metástase Neoplásica , Tamanho da Partícula , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
13.
Emerg Microbes Infect ; 8(1): 920-933, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237479

RESUMO

In early 2017, an outbreak caused by an unknown and supposedly viral agent in the Marilena region of southern Brazil was investigated. Since the etiological agent causing the outbreak was not identified from human samples, mosquitoes from this region were collected. Three out of 121 mosquito pools collected from the region tested positive for alphavirus in molecular tests. Next generation sequencing results revealed the presence of a novel alphavirus, tentatively named here as Caainguá virus (CAAV). DNA barcoding analyses indicated that different species of Culex are hosts for CAAV. This new virus was basal to the New World encephalitic alphaviruses in a comprehensive and robust phylogenetic approach using complete genomes. Viral particles were observed in the cytosol and inside of intracellular compartments of cells in mosquito-derived cell cultures. Despite being noninfectious in vertebrate derived cell cultures, primary culturing of CAAV in human mononuclear cells suggests monocytes and lymphocytes as CAAV targets. However, the epidemiological link of CAAV on the human outbreak should be further explored.


Assuntos
Alphavirus/isolamento & purificação , Encefalite/virologia , Adulto , Alphavirus/classificação , Alphavirus/genética , Alphavirus/fisiologia , Animais , Brasil/epidemiologia , Culicidae/fisiologia , Culicidae/virologia , Encefalite/epidemiologia , Feminino , Humanos , Linfócitos/virologia , Masculino , Monócitos/virologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Filogenia , Adulto Jovem
14.
PLoS Negl Trop Dis ; 13(3): e0006974, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870412

RESUMO

BACKGROUND: Despite decades of use of control programs, schistosomiasis remains a global public health problem. To further reduce prevalence and intensity of infection, or to achieve the goal of elimination in low-endemic areas, there needs to be better diagnostic tools to detect low-intensity infections in low-endemic areas in Brazil. The rationale for development of new diagnostic tools is that the current standard test Kato-Katz (KK) is not sensitive enough to detect low-intensity infections in low-endemic areas. In order to develop new diagnostic tools, we employed a proteomics approach to identify biomarkers associated with schistosome-specific immune responses in hopes of developing sensitive and specific new methods for immunodiagnosis. METHODS AND FINDINGS: Immunoproteomic analyses were performed on egg extracts of Schistosoma mansoni using pooled sera from infected or non-infected individuals from a low-endemic area of Brazil. Cross reactivity with other soil-transmitted helminths (STH) was determined using pooled sera from individuals uniquely infected with different helminths. Using this approach, we identified 23 targets recognized by schistosome acute and chronic sera samples. To identify immunoreactive targets that were likely glycan epitopes, we compared these targets to the immunoreactivity of spots treated with sodium metaperiodate oxidation of egg extract. This treatment yielded 12/23 spots maintaining immunoreactivity, suggesting that they were protein epitopes. From these 12 spots, 11 spots cross-reacted with sera from individuals infected with other STH and 10 spots cross-reacted with the negative control group. Spot number 5 was exclusively immunoreactive with sera from S. mansoni-infected groups in native and deglycosylated conditions and corresponds to Major Egg Antigen (MEA). We expressed MEA as a recombinant protein and showed a similar recognition pattern to that of the native protein via western blot. IgG-ELISA gave a sensitivity of 87.10% and specificity of 89.09% represented by area under the ROC curve of 0.95. IgG-ELISA performed better than the conventional KK (2 slides), identifying 56/64 cases harboring 1-10 eggs per gram of feces that were undiagnosed by KK parasitological technique. CONCLUSIONS: The serological proteome approach was able to identify a new diagnostic candidate. The recombinant egg antigen provided good performance in IgG-ELISA to detect individuals with extreme low-intensity infections (1 egg per gram of feces). Therefore, the IgG-ELISA using this newly identified recombinant MEA can be a useful tool combined with other techniques in low-endemic areas to determine the true prevalence of schistosome infection that is underestimated by the KK method. Further, to overcome the complexity of ELISA in the field, a second generation of antibody-based rapid diagnostic tests (RDT) can be developed.


Assuntos
Antígenos de Helmintos/sangue , Proteínas de Helminto/sangue , Proteoma/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Helmintos/imunologia , Biomarcadores/sangue , Brasil , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Fezes/parasitologia , Feminino , Proteínas de Helminto/imunologia , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , Pessoa de Meia-Idade , Óvulo/imunologia , Contagem de Ovos de Parasitas , Proteoma/imunologia , Proteômica , Proteínas Recombinantes/imunologia , Esquistossomose mansoni/sangue , Sensibilidade e Especificidade , Testes Sorológicos/métodos
16.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114029

RESUMO

Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9), but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens.IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi and Leishmania spp., that have eluded investigators for decades.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Ribonucleoproteínas/genética , Trypanosomatina/genética , Técnicas de Inativação de Genes , Genes de Protozoários , Leishmania major/genética , Estágios do Ciclo de Vida , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Trypanosomatina/crescimento & desenvolvimento
17.
Rev. Soc. Bras. Med. Trop ; 54: e08502021, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1288094

RESUMO

Abstract INTRODUCTION: Electron microscopy (EM) is a rapid and effective tool that can be used to create images of a whole spectrum of virus-host interactions and, as such, has long been used in the discovery and description of viral mechanisms. METHODS: Electron microscopy was used to evaluate the pulmonary pathologies of postmortem lung sections from three patients who died from infection with SARS-associated coronavirus 2 (SARS-CoV-2), a new member of the Coronaviridae family. RESULTS: Diffuse alveolar damage (DAD) was predominant in all three patients. The early exudative stage was characterized principally by edema and extravasation of red blood cells into the alveolar space with injury to the alveolar epithelial cells; this was followed by detachment, apoptosis, and necrosis of type I and II pneumocytes. The capillaries exhibited congestion, exposure of the basement membrane from denuded endothelial cells, platelet adhesion, fibrin thrombi, and rupture of the capillary walls. The proliferative stage was characterized by pronounced proliferation of type II alveolar pneumocytes and multinucleated giant cells. The cytopathic effect of SARS-CoV-2 was observed both in degenerated type II pneumocytes and freely circulating in the alveoli, with components from virions, macrophages, lymphocytes, and cellular debris. CONCLUSIONS: Viral particles consistent with the characteristics of SARS-CoV-2 were observed mainly in degenerated pneumocytes, in the endothelium, or freely circulating in the alveoli. In the final stage of illness, the alveolar spaces were replaced by fibrosis.


Assuntos
Brasil , SARS-CoV-2 , Células Endoteliais , Microscopia Eletrônica de Transmissão , COVID-19 , Pulmão
18.
Mol Biochem Parasitol ; 140(2): 175-82, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15760657

RESUMO

Acidocalcisomes are acidic calcium storage organelles found in several microorganisms. They are characterized by their acidic nature, high electron density, high content of polyphosphates and several cations. Electron microscopy contrast tuned images of Herpetomonas sp. showed the presence of several electron dense organelles ranging from 100 to 300 nm in size. In addition, X-ray element mapping associated with energy-filtering transmission electron microscopy showed that most of the cations, namely Na, Mg, P, K, Fe and Zn, are located in their matrix. Using acridine orange as an indicator dye, a pyrophosphate-driven H+ uptake was measured in cells permeabilized by digitonin. This uptake has an optimal pH of 6.5-6.7 and was inhibited by sodium fluoride (NaF) and imidodiphosphate (IDP), two H+-pyrophosphatase inhibitors. H+ uptake was not promoted by ATP. Addition of 50 microM Ca2+ induced the release of H+, suggesting the presence of a Ca2+/H+ countertransport system in the membranes of the acidic compartments. Na+ was unable to release protons from the organelles. The pyrophosphate-dependent H+ uptake was dependent of ion K+ and inhibited by Na+ Herpetomonas sp. immunolabeled with monoclonal antibodies raised against a Trypanosoma cruzi V-H+-pyrophosphatase shows intense fluorescence in cytoplasmatic organelles of size and distribution similar to the electron-dense vacuoles. Together, these results suggest that the electron dense organelles found in Herpetomonas sp. are homologous to the acidocalcisomes described in other trypanosomatids. They possess a vacuolar H+-pyrophosphatase and a Ca2+/H+ antiport. However, in contrast to the other trypanosomatids so far studied, we were not able to measure any ATP promoted H+ transport in the acidocalcisomes of this parasite.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Trypanosomatina/metabolismo , Animais , Transporte Biológico , Imunofluorescência , Pirofosfatase Inorgânica/antagonistas & inibidores , Pirofosfatase Inorgânica/química , Microscopia Eletrônica , Organelas/química , Organelas/metabolismo , Organelas/ultraestrutura , Trypanosomatina/ultraestrutura
19.
Biomed Res Int ; 2014: 714749, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587988

RESUMO

Reservosomes are large round vesicles located at the posterior end of epimastigote forms of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. They are the specific end organelles of the endocytosis pathway of T. cruzi, and they play key roles in nutrient uptake and cell differentiation. These lysosome-like organelles accumulate ingested macromolecules and contain large amounts of a major cysteine proteinase (cruzipain or GP57/51 protein). Aim of this study was to produce a monoclonal antibody (mAb) against a recombinant T. cruzi cruzipain (TcCruzipain) that specifically labels the reservosomes. BALB/c mice were immunized with purified recombinant TcCruzipain to obtain the mAb. After fusion of isolated splenocytes with myeloma cells and screening, a mAb was obtained by limiting dilution and characterized by capture ELISA. We report here the production of a kappa-positive monoclonal IgG antibody (mAb CZP-315.D9) that recognizes recombinant TcCruzipain. This mAb binds preferentially to a protein with a molecular weight of about 50 kDa on western blots and specifically labels reservosomes by immunofluorescence and transmission electron microscopy. The monoclonal CZP-315.D9 constitutes a potentially powerful marker for use in studies on the function of reservosomes of T. cruzi.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Doença de Chagas/patologia , Cisteína Endopeptidases/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Diferenciação Celular , Doença de Chagas/parasitologia , Cisteína Endopeptidases/imunologia , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Organelas/patologia , Organelas/ultraestrutura , Proteínas de Protozoários , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade
20.
PLoS One ; 9(9): e106852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203926

RESUMO

In this study, we performed the molecular and biochemical characterization of an ecto-enzyme present in Trypanosoma rangeli that is involved with the hydrolysis of extracellular inorganic pyrophosphate. PCR analysis identified a putative proton-pyrophosphatase (H(+)-PPase) in the epimastigote forms of T. rangeli. This protein was recognized with Western blot and flow cytometry analysis using an antibody against the H(+)-PPase of Arabidopsis thaliana. Immunofluorescence microscopy confirmed that this protein is located in the plasma membrane of T. rangeli. Biochemical assays revealed that the optimum pH for the ecto-PPase activity was 7.5, as previously demonstrated for other organisms. Sodium fluoride (NaF) and aminomethylenediphosphonate (AMDP) were able to inhibit approximately 75% and 90% of the ecto-PPase activity, respectively. This ecto-PPase activity was stimulated in a dose-dependent manner by MgCl2. In the presence of MgCl2, this activity was inhibited by millimolar concentrations of CaCl2. The ecto-PPase activity of T. rangeli decreased with increasing cell proliferation in vitro, thereby suggesting a role for this enzyme in the acquisition of inorganic phosphate (Pi). Moreover, this activity was modulated by the extracellular concentration of Pi and increased approximately two-fold when the cells were maintained in culture medium depleted of Pi. All of these results confirmed the occurrence of an ecto-PPase located in the plasma membrane of T. rangeli that possibly plays an important role in phosphate metabolism of this protozoan.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Estágios do Ciclo de Vida , Trypanosoma rangeli/enzimologia , Trypanosoma rangeli/crescimento & desenvolvimento , Proliferação de Células , Difosfatos/metabolismo , Hidrólise , Trypanosoma rangeli/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA