RESUMO
The current study was aimed at synthesizing a glucuronide derivative of D-penicillamine (D-PA) to be used for imaging purposes. First of all, D-PA-glucuronide (D-PA-Glu) was synthesized by experimental treatments starting with uridine 5'-diphospho-glucuronosyltransferase enzyme rich microsome preparate. Then, the synthesized compound was labeled with technetium ((99m)Tc) by using a reduction method with stannous chloride. Quality controls were performed by using high-performance liquid chromatography and thin-layer radio chromatography (TLRC). Radiolabeling yield of (99m)Tc-D-PA-Glu was more than 98% according to TLRC results. In vitro evaluations of radiolabeled complexes were investigated on PC-3 human prostate cancer cells. (99m)Tc-D-PA-Glu exhibited more accumulation on PC-3 cells versus (99m)Tc-D-PA at 240 minutes. In order to determine its radiopharmaceutical potential, biodistribution studies were carried out in male Albino Wistar rats. The biodistribution results of (99m)Tc-D-PA-Glu, showed the highest uptake in prostate at 120 minutes postinjection with the main excretion route being through kidneys and bladder. (99m)Tc-D-PA-Glu and (99m)Tc-D-PA have exhibited different biodistribution results.
Assuntos
Glucuronídeos/síntese química , Compostos de Organotecnécio/síntese química , Penicilamina/análogos & derivados , Tecnécio/química , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Glucuronídeos/química , Glucuronídeos/farmacocinética , Humanos , Masculino , Espectrometria de Massas , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Penicilamina/síntese química , Penicilamina/química , Penicilamina/farmacocinética , Neoplasias da Próstata/metabolismo , Ratos , Ratos Wistar , Distribuição TecidualRESUMO
Human UDP-glucuronosyltransferases (UGTs) are a family of membrane-bound enzymes of the endoplasmic reticulum. They catalyze the glucuronidation of various endogenous and exogenous compounds, converting them into more polar glucuronides. In this study, uracil glucuronide was enzymatically synthesized using a UGT-rich microsome preparate, which was separated from Hutu-80 cells. Two different glucuronide derivatives were obtained, with a total reaction yield of 22.95% +/- 2.4% (n = 4). The glucuronide ligands were defined as uracil-n-glucuronide (UNG) and uracil-o-glucuronide (UOG). These were then analyzed by high-performance liquid chromatography-mass spectrometry and labeled with I-125 and I-131, separately. The radiolabeled (125/131)I-UNG and (125/131)I-UOG presented good incorporation ratios for Hutu-80, Caco-2, Detroit 562, and ACBRI 519 cells. The incorporation ratios of (125/131)I-UOG were higher than those of (125/131)I-UNG and of other labeled components for all cell types, and were also statistically significant compared to the values of (125/131)I-UNG for primary human intestinal epithelial cells (ACBRI 519) and human intestinal adenocarcinoma cells. Cell incorporation rates of n-glucuronides and o-glucuronides were higher compared to uracil, with o-glucuronides being more selective. The results suggest that both I-125- and I-131-labeled glucuronides can be used in imaging and therapy, and further research should be done in preclinical stages.