Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Immunol ; 207(5): 1333-1343, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34408012

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.


Assuntos
Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Doença Aguda , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária , Gravidez , Receptores KIR3DL1/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Am J Respir Crit Care Med ; 205(1): 46-59, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731593

RESUMO

Rationale: Sepsis is the leading cause of death in adult ICUs. At present, sepsis diagnosis relies on nonspecific clinical features. It could transform clinical care to have immune-cell biomarkers that could predict sepsis diagnosis and guide treatment. For decades, neutrophil phenotypes have been studied in sepsis, but a diagnostic cell subset has yet to be identified. Objectives: To identify an early, specific immune signature of sepsis severity that does not overlap with other inflammatory biomarkers and that distinguishes patients with sepsis from those with noninfectious inflammatory syndrome. Methods: Mass cytometry combined with computational high-dimensional data analysis was used to measure 42 markers on whole-blood immune cells from patients with sepsis and control subjects and to automatically and comprehensively characterize circulating immune cells, which enables identification of novel, disease-specific cellular signatures. Measurements and Main Results: Unsupervised analysis of high-dimensional mass cytometry data characterized previously unappreciated heterogeneity within the CD64+ immature neutrophils and revealed two new subsets distinguished by CD123 and PD-L1 (programmed death ligand 1) expression. These immature neutrophils exhibited diminished activation and phagocytosis functions. The proportion of CD123-expressing neutrophils correlated with clinical severity. Conclusions: This study showed that these two new neutrophil subsets were specific to sepsis and detectable through routine flow cytometry by using seven markers. The demonstration here that a simple blood test distinguishes sepsis from other inflammatory conditions represents a key biological milestone that can be immediately translated into improvements in patient care.


Assuntos
Antígeno B7-H1/sangue , Subunidade alfa de Receptor de Interleucina-3/sangue , Neutrófilos/metabolismo , Sepse/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Regras de Decisão Clínica , Diagnóstico Diferencial , Citometria de Fluxo , Humanos , Modelos Lineares , Estudos Longitudinais , Receptores de IgG/sangue , Sensibilidade e Especificidade , Sepse/sangue , Sepse/imunologia , Índice de Gravidade de Doença
3.
Haematologica ; 105(2): 478-489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31171644

RESUMO

The Bruton tyrosine kinase inhibitor ibrutinib has become a leading therapy against chronic lymphoid leukemia. Recently, ibrutinib has been associated with the occurrence of invasive fungal infections, in particular invasive aspergillosis. The mechanisms underlying the increased susceptibility to fungal infections associated with exposure to ibrutinib are currently unknown. Innate immunity, in particular polymer-phonuclear neutrophils, represents the cornerstone of anti-Aspergillus immunity; however, the potential impact of ibrutinib on neutrophils has been little studied. Our study investigated the response to Aspergillus fumigatus and neutrophil function in patients with chronic lymphoid leukemia or lymphoma, who were undergoing ibrutinib therapy. We studied the consequences of ibrutinib exposure on the functions and anti-Aspergillus responses of neutrophils obtained from healthy donors and 63 blood samples collected at different time points from 32 patients receiving ibrutinib for lymphoid malignancies. We used both flow cytometry and video-microscopy approaches to analyze neutrophils' cell surface molecule expression, cytokine production, oxidative burst, chemotaxis and killing activity against Aspergillus Ibrutinib is associated, both in vitro and in patients under treatment, with multiple functional defects in neutrophils, including decreased production of reactive oxygen species, impairment of their capacity to engulf Aspergillus and inability to efficiently kill germinating conidia. Our results demonstrate that ibrutinib-exposed neutrophils develop significant functional defects that impair their response against Aspergillus fumigatus, providing a plausible explanation for the emergence of invasive aspergillosis in ibrutinib-treated patients.


Assuntos
Aspergilose , Aspergillus fumigatus , Adenina/análogos & derivados , Aspergilose/tratamento farmacológico , Humanos , Neutrófilos , Piperidinas , Esporos Fúngicos
4.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L608-L620, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30675803

RESUMO

Deterioration of lung functions and degradation of elastin fibers with age are accelerated during chronic obstructive pulmonary disease (COPD). Excessive genesis of soluble elastin peptides (EP) is a key factor in the pathophysiology of COPD. We have previously demonstrated that 6-wk-old mice exhibited emphysematous structural changes associated with proinflammatory immune response after EP instillation. In this study, we investigated the consequences of aging on inflammatory, immune, and histological criteria associated with murine emphysema progression after EP exposure. Young (6 wk old) and elderly (15 mo old) C57BL/6J mice were endotracheally instilled with EP, and, at various time points after treatment, the inflammatory cell profiles from bronchoalveolar lavage fluids (BALF) and the T-lymphocyte phenotypes, at local and systemic levels, were analyzed by flow cytometry. Lungs were also prepared to allow morphological and histological analysis by confocal microscopy. Elderly mice exhibited an earlier development of pulmonary emphysema, characterized by an increase of the inflammatory and lymphocytic infiltrates, extracellular matrix breakdown, and airspace enlargement compared with young mice. This age-dependent parenchymal tissue remodeling was associated with an increase of the matrix metalloproteinase expressions and desmosine levels in BALF and/or sera of EP-treated mice. In addition, both the proportion of CD4+CD28- and CD8+CD28- T cells in the tissues of EP-treated mice and the interferon-γ levels in the EP-specific memory T-cell clones were significantly higher in elderly versus younger mice. This study demonstrates that aging accelerates emphysema development and that this effect is linked to increased EP production and their effects on inflammatory and immune response.


Assuntos
Envelhecimento/imunologia , Envelhecimento/patologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Desmosina/metabolismo , Modelos Animais de Doenças , Elastina/administração & dosagem , Elastina/metabolismo , Feminino , Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/patologia , Proteólise , Enfisema Pulmonar/etiologia
5.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L534-L547, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572155

RESUMO

Chronic obstructive pulmonary disease and emphysema are associated with increased elastin peptides (EP) production because of excessive breakdown of lung connective tissue. We recently reported that exposure of mice to EP elicited hallmark features of emphysema. EP effects are largely mediated through a receptor complex that includes the elastin-binding protein spliced-galactosidase (S-gal). In previous studies, we established a correlation between cytokine production and S-gal protein expression in EP-treated immune cells. In this study, we investigated the S-gal-dependent EP effects on T-helper (Th) and T-cytotoxic (Tc) responses during murine EP-triggered pulmonary inflammation. C57BL/6J mice were endotracheally instilled with the valine-glycine-valine-alanine-proline-glycine (VGVAPG) elastin peptide, and, 21 days after treatment, local and systemic T-lymphocyte phenotypes were analyzed at cytokine and transcription factor expression levels by multicolor flow cytometry. Exposure of mice to the VGVAPG peptide resulted in a significant increase in the proportion of the CD4+ and CD8+ T cells expressing the cytokines IFN-γ or IL-17a and the transcription factors T-box expressed in T cells or retinoic acid-related orphan receptor-γt (RORγt) without effects on IL-4 and Gata-binding protein 3 to DNA sequence [A/T]GATA[A/G] expression. These effects were maximized when each T-cell subpopulation was challenged ex vivo with EP, and they were inhibited in vivo when an analogous peptide antagonizing the EP/S-gal interactions was instilled together with the VGVAPG peptide. This study demonstrates that, during murine emphysema, EP-S-gal interactions contribute to a Th-1 and Th-17 proinflammatory T-cell response combined with a Tc-1 response. Our study also highlights the S-gal receptor as a putative pharmacological target to modulate such an immune response.


Assuntos
Elastina/metabolismo , Galactosidases/metabolismo , Peptídeos/metabolismo , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Líquido da Lavagem Broncoalveolar , Linfócitos T CD8-Positivos/imunologia , Elastina/química , Feminino , Galactosidases/antagonistas & inibidores , Interferon gama/metabolismo , Interleucina-17/metabolismo , Linfonodos/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Elastase Pancreática/metabolismo , Peptídeos/química , Baço/patologia , Sus scrofa , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Células Th17/imunologia
6.
J Immunol ; 194(8): 3612-22, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25762779

RESUMO

The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor that interacts with advanced glycation end products, but also with C3a, CpG DNA oligonucleotides, and alarmin molecules such as HMGB1 to initiate a proinflammatory reaction. Systemic lupus erythematosus is an autoimmune disorder associated with the accumulation of RAGE ligands. We generated mice invalidated for RAGE in the lupus-prone B6-MRL Fas lpr/j background to determine the role of RAGE in the pathogenesis of systemic lupus erythematosus. We compared the phenotype of these mice with that of their wild-type and B6-MRL Fas lpr/j littermates. Lymphoproliferative syndrome, production of anti-dsDNA Abs, lupus nephritis, and accumulation of CD3(+)B220(+)CD4(-)CD8(-) autoreactive T cells (in the peripheral blood and the spleen) were significantly increased in B6-MRL Fas lpr/j RAGE(-/-) mice compared with B6-MRL Fas lpr/j mice (respectively p < 0.005, p < 0.05, p < 0.001, and p < 0.001). A large proportion of autoreactive T cells from B6-MRL Fas lpr/j mice expressed RAGE at their surface. Time course studies of annexin V expression revealed that autoreactive T cells in the spleen of B6-MRL Fas lpr/j-RAGE(-/-) mice exhibited a delay in apoptosis and expressed significantly less activated caspase 3 (39.5 ± 4.3%) than T cells in B6-MRL Fas lpr/j mice (65.5 ± 5.2%) or wild-type mice (75.3 ± 2.64%) (p = 0.02). We conclude that the deletion of RAGE in B6-MRL Fas lpr/j mice promotes the accumulation of autoreactive CD3(+)B220(+)CD4(-)CD8(-) T cells, therefore exacerbating lymphoproliferative syndrome, autoimmunity, and organ injury. This suggests that RAGE rescues the apoptosis of T lymphocytes when the death receptor Fas/CD95 is dysfunctional.


Assuntos
Apoptose/imunologia , Nefrite Lúpica/imunologia , Transtornos Linfoproliferativos/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Apoptose/genética , Caspase 3/genética , Caspase 3/imunologia , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Baço/imunologia , Baço/patologia , Síndrome , Linfócitos T/patologia
7.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L8-23, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519205

RESUMO

Emphysema is the major component of chronic obstructive pulmonary disease (COPD). During emphysema, elastin breakdown in the lung tissue originates from the release of large amounts of elastase by inflammatory cells. Elevated levels of elastin-derived peptides (EP) reflect massive pulmonary elastin breakdown in COPD patients. Only the EP containing the GXXPG conformational motif with a type VIII ß-turn are elastin receptor ligands inducing biological activities. In addition, the COOH-terminal glycine residue of the GXXPG motif seems a prerequisite to the biological activity. In this study, we endotracheally instilled C57BL/6J mice with GXXPG EP and/or COOH-terminal glycine deleted-EP whose sequences were designed by molecular dynamics and docking simulations. We investigated their effect on all criteria associated with the progression of murine emphysema. Bronchoalveolar lavages were recovered to analyze cell profiles by flow cytometry and lungs were prepared to allow morphological and histological analysis by immunostaining and confocal microscopy. We observed that exposure of mice to EP elicited hallmark features of emphysema with inflammatory cell accumulation associated with increased matrix metalloproteinases and desmosine expression and of remodeling of parenchymal tissue. We also identified an inactive COOH-terminal glycine deleted-EP that retains its binding-activity to EBP and that is able to inhibit the in vitro and in vivo activities of emphysema-inducing EP. This study demonstrates that EP are key actors in the development of emphysema and that they represent pharmacological targets for an alternative treatment of emphysema based on the identification of EP analogous antagonists by molecular modeling studies.


Assuntos
Elastina/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Elastase Pancreática/metabolismo , Peptídeos/metabolismo , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Receptores de Superfície Celular/antagonistas & inibidores
8.
Front Immunol ; 13: 847576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185935

RESUMO

The success of immune checkpoint therapy in cancer has changed our way of thinking, promoting the design of future cancer treatments that places the immune system at the center stage. The knowledge gained on immune regulation and tolerance helped the identification of promising new clinical immune targets. Among them, the lectin-like transcript 1 (LLT1) is the ligand of CD161 (NKR-P1A) receptor expressed on natural killer cells and T cells. LLT1/CD161 interaction modulates immune responses but the exact nature of the signals delivered is still partially resolved. Investigation on the role of LLT1/CD161 interaction has been hampered by the lack of functional homologues in animal models. Also, some studies have been misled by the use of non-specific reagents. Recent studies and meta-analyses of single cell data are bringing new insights into the function of LLT1 and CD161 in human pathology and notably in cancer. The advances made on the characterization of the tumor microenvironment prompt us to integrate LLT1/CD161 interaction into the equation. This review recapitulates the key findings on the expression profile of LLT1 and CD161, their regulation, the role of their interaction in cancer development, and the relevance of targeting LLT1/CD161 interaction.


Assuntos
Lectinas Tipo C/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Células Matadoras Naturais/metabolismo , Ligantes , Linfócitos T/metabolismo
9.
Front Immunol ; 13: 903069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325333

RESUMO

Macrophages from human and mouse skin share phenotypic and functional features, but remain to be characterized in pathological skin conditions. Skin-resident macrophages are known to derive from embryonic precursors or from adult hematopoiesis. In this report, we investigated the origins, phenotypes and functions of macrophage subsets in mouse and human skin and in cutaneous squamous cell carcinoma (cSCC) using the spectral flow cytometry technology that enables cell autofluorescence to be considered as a full-fledged parameter. Autofluorescence identifies macrophage subsets expressing the CD206 mannose receptor in human peri-tumoral skin and cSCC. In mouse, all AF+ macrophages express the CD206 marker, a subset of which also displaying the TIM-4 marker. While TIM-4-CD206+ AF+ macrophages can differentiate from bone-marrow monocytes and infiltrate skin and tumor, TIM-4 identifies exclusively a skin-resident AF+ macrophage subset that can derive from prenatal hematopoiesis which is absent in tumor core. In mouse and human, AF+ macrophages from perilesional skin and cSCC are highly phagocytic cells contrary to their AF- counterpart, thus identifying autofluorescence as a bona fide marker for phagocytosis. Our data bring to light autofluorescence as a functional marker characterizing subsets of phagocytic macrophages in skin and cSCC. Autofluorescence can thus be considered as an attractive marker of function of macrophage subsets in pathological context.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Adulto , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/patologia , Fagocitose , Macrófagos/patologia , Monócitos
10.
Front Immunol ; 12: 628375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113337

RESUMO

Background: Interferon beta (IFNß) has been prescribed as a first-line disease-modifying therapy for relapsing-remitting multiple sclerosis (RRMS) for nearly three decades. However, there is still a lack of treatment response markers that correlate with the clinical outcome of patients. Aim: To determine a combination of cellular and molecular blood signatures associated with the efficacy of IFNß treatment using an integrated approach. Methods: The immune status of 40 RRMS patients, 15 of whom were untreated and 25 that received IFNß1a treatment (15 responders, 10 non-responders), was investigated by phenotyping regulatory CD4+ T cells and naïve/memory T cell subsets, by measurement of circulating IFNα/ß proteins with digital ELISA (Simoa) and analysis of ~600 immune related genes including 159 interferon-stimulated genes (ISGs) with the Nanostring technology. The potential impact of HLA class II gene variation in treatment responsiveness was investigated by genotyping HLA-DRB1, -DRB3,4,5, -DQA1, and -DQB1, using as a control population the Milieu Interieur cohort of 1,000 French healthy donors. Results: Clinical responders and non-responders displayed similar plasma levels of IFNß and similar ISG profiles. However, non-responders mainly differed from other subject groups with reduced circulating naïve regulatory T cells, enhanced terminally differentiated effector memory CD4+ TEMRA cells, and altered expression of at least six genes with immunoregulatory function. Moreover, non-responders were enriched for HLA-DQB1 genotypes encoding DQ8 and DQ2 serotypes. Interestingly, these two serotypes are associated with type 1 diabetes and celiac disease. Overall, the immune signatures of non-responders suggest an active disease that is resistant to therapeutic IFNß, and in which CD4+ T cells, likely restricted by DQ8 and/or DQ2, exert enhanced autoreactive and bystander inflammatory activities.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Variação Genética , Cadeias beta de HLA-DQ/genética , Fatores Imunológicos/uso terapêutico , Interferon beta-1a/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Cadeias beta de HLA-DQ/imunologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Fenótipo , Falha de Tratamento , Adulto Jovem
11.
Front Immunol ; 12: 666233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936105

RESUMO

The integrative analysis of tumor immune microenvironment (TiME) components, their interactions and their microanatomical distribution is mandatory to better understand tumor progression. Imaging Mass Cytometry (IMC) is a high dimensional tissue imaging system which allows the comprehensive and multiparametric in situ exploration of tumor microenvironments at a single cell level. We describe here the design of a 39-antibody IMC panel for the staining of formalin-fixed paraffin-embedded human tumor sections. We also provide an optimized staining procedure and details of the experimental workflow. This panel deciphers the nature of immune cells, their functions and their interactions with tumor cells and cancer-associated fibroblasts as well as with other TiME structural components known to be associated with tumor progression like nerve fibers and tumor extracellular matrix proteins. This panel represents a valuable innovative and powerful tool for fundamental and clinical studies that could be used for the identification of prognostic biomarkers and mechanisms of resistance to current immunotherapies.


Assuntos
Citometria por Imagem/métodos , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Humanos , Imuno-Histoquímica , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fluxo de Trabalho
12.
J Invest Dermatol ; 141(10): 2369-2379, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33831432

RESUMO

NK cells and tissue-resident innate lymphoid cells (ILCs) are innate effectors found in the skin. To investigate their temporal dynamics and specific functions throughout the development of cutaneous squamous cell carcinoma (cSCC), we combined transcriptomic and immunophenotyping analyses in mouse and human cSCCs. We identified an infiltration of NK cells and ILC1s as well as the presence of a few ILC3s. Adoptive transfer of NK cells in NK cell‒ and ILC-deficient Nfil3-/- mice revealed a role for NK cells in early control of cSCC. During tumor progression, we identified a population skewing with the infiltration of atypical ILC1 secreting inflammatory cytokines but reduced levels of IFN-γ at the papilloma stage. NK cells and ILC1s were functionally impaired, with reduced cytotoxicity and IFN-γ secretion associated with the downregulation of activating receptors. They also showed a high degree of heterogeneity in mouse and human cSCCs with the expression of several markers of exhaustion, including TIGIT on NK cells and PD-1 and TIM-3 on ILC1s. Our data show an enrichment in inflammatory ILC1 at the precancerous stage together with impaired antitumor functions in NK cells and ILC1 that could contribute to the development of cSCC and thus suggest that future immunotherapies should take both ILC populations into account.


Assuntos
Carcinoma de Células Escamosas/imunologia , Células Matadoras Naturais/fisiologia , Linfócitos/fisiologia , Neoplasias Cutâneas/imunologia , Transferência Adotiva , Animais , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/patologia , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/análise , Estadiamento de Neoplasias , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia
13.
Front Immunol ; 11: 1117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582197

RESUMO

In mice, monocytes (Mo) are conventionally described as CX3CR1low classical Mo (CMo) and CX3CR1high non-classical Mo (NCMo) based on the expression of EGFP in Cx3cr1+/EGFP mice and by analogy with human CX3CR1 expression. Although this terminology is widely used, it may not reflect the expression of CX3CR1 on Mo subsets. Using an unsupervised multiparametric analysis of blood Mo in steady state and after sterile peritonitis, we observed that CX3CR1 expression did not discriminate the CMo from the NCMo subsets. Our results highlight that despite being a reliable reporter to discriminate Mo subpopulations, EGFP level in Cx3cr1+/EGFP mice does not reflect CX3CR1 expression measured by a fluorescently-labeled CX3CL1 chemokine and a CX3CR1 specific antibody. In conclusion, authors should be cautious not to identify murine classical and non-classical Mo as CX3CR1low and CX3CR1high but rather use alternative markers such as the combination of Ly6C and CD43.


Assuntos
Receptor 1 de Quimiocina CX3C/imunologia , Monócitos/citologia , Monócitos/imunologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
Front Immunol ; 11: 675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425929

RESUMO

Sepsis is characterized by a systemic inflammation that can cause an immune dysfunction, for which the underlying mechanisms are unclear. We investigated the impact of cecal ligature and puncture (CLP)-mediated polymicrobial sepsis on monocyte (Mo) mobilization and functions. Our results show that CLP led to two consecutive phases of Mo deployment. The first one occurred within the first 3 days after the induction of the peritonitis, while the second phase was of a larger amplitude and extended up to a month after apparent clinical recovery. The latter was associated with the expansion of Mo in the tissue reservoirs (bone marrow and spleen), their release in the blood and their accumulation in the vasculature of peripheral non-lymphoid tissues. It occurred even after antibiotic treatment but relied on inflammatory-dependent pathways and inversely correlated with increased susceptibility and severity to a secondary infection. The intravascular lung Mo displayed limited activation capacity, impaired phagocytic functions and failed to transfer efficient protection against a secondary infection into monocytopenic CCR2-deficient mice. In conclusion, our work unveiled key dysfunctions of intravascular inflammatory Mo during the recovery phase of sepsis and provided new insights to improve patient protection against secondary infections.


Assuntos
Inflamação/imunologia , Monócitos/imunologia , Sepse/imunologia , Animais , Antígenos Ly/análise , Receptor 1 de Quimiocina CX3C/fisiologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Neutrófilos/imunologia , Fagocitose , Receptores CCR2/fisiologia
15.
Cancers (Basel) ; 12(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664318

RESUMO

Cutaneous squamous cell carcinoma (cSCC) development has been linked to immune dysfunctions but the mechanisms are still unclear. Here, we report a progressive infiltration of tumor-associated neutrophils (TANs) in precancerous and established cSCC lesions from chemically induced skin carcinogenesis. Comparative in-depth gene expression analyses identified a predominant protumor gene expression signature of TANs in lesions compared to their respective surrounding skin. In addition, in vivo depletion of neutrophils delayed tumor growth and significantly increased the frequency of proliferating IFN-γ (interferon-γ)-producing CD8+ T cells. Mechanisms that limited antitumor responses involved high arginase activity, production of reactive oxygen species (ROS) and nitrite (NO), and the expression of programmed death-ligand 1 (PD-L1) on TAN, concomitantly with an induction of PD-1 on CD8+ T cells, which correlated with tumor size. Our data highlight the relevance of targeting neutrophils and PD-L1-PD-1 (programmed death-1) interaction in the treatment of cSCC.

16.
J Exp Med ; 215(10): 2536-2553, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201786

RESUMO

Tissue-resident macrophages can self-maintain without contribution of adult hematopoiesis. Herein we show that tissue-resident interstitial macrophages (Res-TAMs) in mouse lungs contribute to the pool of tumor-associated macrophages (TAMs) together with CCR2-dependent recruited macrophages (MoD-TAMs). Res-TAMs largely correlated with tumor cell growth in vivo, while MoD-TAMs accumulation was associated with enhanced tumor spreading. Both cell subsets were depleted after chemotherapy, but MoD-TAMs rapidly recovered and performed phagocytosis-mediated tumor clearance. Interestingly, anti-VEGF treatment combined with chemotherapy inhibited both Res and Mod-TAM reconstitution without affecting monocyte infiltration and improved its efficacy. Our results reveal that the developmental origin of TAMs dictates their relative distribution, function, and response to cancer therapies in lung tumors.


Assuntos
Neoplasias Pulmonares/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fagocitose , Animais , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Receptores CCR2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA