RESUMO
BACKGROUND: The sequelae of sepsis were once thought to be independent of sepsis itself and assumed to be either comorbid to sick patients or complications of critical illness. Recent studies have reported consistent patterns of functional disabilities in sepsis survivors that can last from months to years after symptoms of active sepsis had resolved. BODY: Post-sepsis syndrome is an emerging pathological entity that has garnered significant interest amongst clinicians and researchers over the last two decades. It is marked by a significantly increased risk of death and a poor health-related quality of life associated with a constellation of long-term effects that persist following the patient's bout with sepsis. These include neurocognitive impairment, functional disability, psychological deficits, and worsening medical conditions. CONCLUSION: This "post-sepsis syndrome" has been the subject of active preclinical and clinical research providing new mechanistic insights and approaches linked to survivor well-being. Here we review important aspects of these research efforts and goals of care for patients who survive sepsis.
Assuntos
Transtornos Cognitivos/etiologia , Pessoas com Deficiência/psicologia , Sepse/complicações , Transtornos Cognitivos/mortalidade , Transtornos Cognitivos/fisiopatologia , Humanos , Qualidade de Vida/psicologia , Recuperação de Função Fisiológica , Sepse/mortalidade , Sepse/fisiopatologia , Sobreviventes/psicologiaRESUMO
Over-nutrition and its late consequences are a dominant theme in medicine today. In addition to the health hazards brought on by over-nutrition, the medical community has recently accumulated a roster of health benefits with obesity, grouped under "obesity paradox." Throughout the world and throughout history until the 20th century, under-nutrition was a dominant evolutionary force. Under-nutrition brings with it a mix of benefits and detriments that are opposite to and continuous with those of over-nutrition. This continuum yields J-shaped or U-shaped curves relating body mass index to mortality. The overweight have an elevated risk of dying in middle age of degenerative diseases while the underweight are at increased risk of premature death from infectious conditions. Micronutrient deficiencies, major concerns of nutritional science in the 20th century, are being neglected. This "hidden hunger" is now surprisingly prevalent in all weight groups, even among the overweight. Because micronutrient replacement is safe, inexpensive, and predictably effective, it is now an exceptionally attractive target for therapy across the spectrum of weight and age. Nutrition-related conditions worthy of special attention from caregivers include excess vitamin A, excess vitamin D, and deficiency of magnesium.
Assuntos
Desnutrição/metabolismo , Micronutrientes , Nutrientes , Estado Nutricional , Hipernutrição/metabolismo , Índice de Massa Corporal , Humanos , Inquéritos NutricionaisRESUMO
Sepsis continues to produce widespread inflammation, illness, and death, prompting intensive research aimed at uncovering causes and therapies. In this article, we focus on ghrelin, an endogenous peptide with promise as a potent anti-inflammatory agent. Ghrelin was discovered, tracked, and isolated from stomach cells based on its ability to stimulate release of growth hormone. It also stimulates appetite and is shown to be anti-inflammatory in a wide range of tissues. The anti-inflammatory effects mediated by ghrelin are a result of both the stimulation of anti-inflammatory processes and an inhibition of pro-inflammatory forces. Anti-inflammatory processes are promoted in a broad range of tissues including the hypothalamus and vagus nerve as well as in a broad range of immune cells. Aged rodents have reduced levels of growth hormone (GH) and diminished immune responses; ghrelin administration boosts GH levels and immune response. The anti-inflammatory functions of ghrelin, well displayed in preclinical animal models of sepsis, are just being charted in patients, with expectations that ghrelin and growth hormone might improve outcomes in patients with sepsis.
Assuntos
Síndrome da Liberação de Citocina/metabolismo , Citocinas/metabolismo , Grelina/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Grelina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Receptores de Grelina/metabolismo , Sepse/tratamento farmacológico , Sepse/imunologia , Transdução de SinaisRESUMO
Magnesium (Mg) plays important roles in maintaining genomic stability and cellular redox. Mg also serves as nature's physiological calcium (Ca) channel antagonist, controlling intracellular Ca entry. Because Ca is the most important second messenger, its intracellular concentration is tightly regulated. Excess intracellular Ca can activate aberrant signaling pathways leading to the acquisition of pathological characteristics and cell injury. Several epidemiological studies have linked Mg deficiency (MgD) and increased Ca:Mg ratios with higher incidences of colon cancer and increased mortality. While it is estimated that less than 50% of the US population consumes the recommended daily allowance for Mg, Ca supplementation is widespread. Therefore, we studied the effect of MgD, with variable Ca:Mg ratios on cellular oxidative stress, cell migration, calpain activity, and associated signaling pathways using the CT26 colon cancer cell line. MgD (with Ca:Mg ratios >1) elevated intracellular Ca levels, calpain activity and TRPM7 expression, as well as oxidative stress and cell migration, consistent with observed degradation of full-length E-cadherin, ß-catenin, and N-terminal FAK. MgD was accompanied by enhanced degradation of IκBα and the transactivation domain containing the C-terminus of NF-κB p65 (RelA). MgD-exposed CT26 cells exhibited increased p53 degradation and aneuploidy, markers of genomic instability. By contrast, these pathological changes were not observed when CT26 were cultured under MgD conditions where the Ca:Mg ratio was kept at 1. Together, these data support that exposure of colon cancer cells to MgD with physiological Ca concentrations (or increasing Ca:Mg ratios) leads to the acquisition of a more aggressive, metastatic phenotype.
Assuntos
Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Deficiência de Magnésio/metabolismo , Magnésio/metabolismo , Cálcio/análise , Calpaína/genética , Calpaína/metabolismo , Humanos , Magnésio/análise , Estresse Oxidativo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Células Tumorais CultivadasRESUMO
E. coli releases a 33 amino acid peptide melanocortin-like peptide of E. coli (MECO-1) that is identical to the C-terminus of the E. coli elongation factor-G (EF-G) and has interesting similarities to two prominent mammalian melanocortin hormones, alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH). Note that MECO-1 lacks HFRW, the common pharmacophore of the known mammalian melanocortin peptides. MECO-1 and the two hormones were equally effective in severely blunting release of cytokines (HMGB1 and TNF) from macrophage-like cells in response to (i) endotoxin (lipopolysaccharide) or (ii) pro-inflammatory cytokine HMGB-1. The in vitro anti-inflammatoty effects of MECO-1 and of alpha-MSH were abrogated by (i) antibody against melanocortin-1 receptor (MC1R) and by (ii) agouti, an endogenous inverse agonist of MC1R. In vivo MECO-1 was even more potent than alpha-MSH in rescuing mice from death due to (i) lethal doses of LPS endotoxin or (ii) cecal ligation and puncture, models of sterile and infectious sepsis, respectively.