Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Surg Endosc ; 37(6): 4803-4811, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36109357

RESUMO

BACKGROUND: Utility and usability of laser speckle contrast imaging (LSCI) in detecting real-time tissue perfusion in robot-assisted surgery (RAS) and laparoscopic surgery are not known. LSCI displays a color heatmap of real-time tissue blood flow by capturing the interference of coherent laser light on red blood cells. LSCI has advantages in perfusion visualization over indocyanine green imaging (ICG) including repeat use on demand, no need for dye, and no latency between injection and display. Herein, we report the first-in-human clinical comparison of a novel device combining proprietary LSCI processing and ICG for real-time perfusion assessment during RAS and laparoscopic surgeries. METHODS: ActivSight™ imaging module is integrated between a standard laparoscopic camera and scope, capable of detecting tissue blood flow via LSCI and ICG in laparoscopic surgery. From November 2020 to July 2021, we studied its use during elective robotic-assisted and laparoscopic cholecystectomies, colorectal, and bariatric surgeries (NCT# 04633512). For RAS, an ancillary laparoscope with ActivSight imaging module was used for LSCI/ICG visualization. We determined safety, usability, and utility of LSCI in RAS vs. laparoscopic surgery using end-user/surgeon human factor testing (Likert scale 1-5) and compared results with two-tailed t tests. RESULTS: 67 patients were included in the study-40 (60%) RAS vs. 27 (40%) laparoscopic surgeries. Patient demographics were similar in both groups. No adverse events to patients and surgeons were observed in both laparoscopic and RAS groups. Use of an ancillary laparoscopic system for LSCI/ICG visualization had minimal impact on usability in RAS as evidenced by surgeon ratings of device usability (set-up 4.2/5 and form-factor 3.8/5). LSCI ability to detect perfusion (97.5% in RAS vs 100% in laparoscopic cases) was comparable in both RAS and laparoscopic cases. CONCLUSIONS: LSCI demonstrates comparable utility and usability in detecting real-time tissue perfusion/blood flow in RAS and laparoscopic surgery.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Humanos , Verde de Indocianina , Imagem de Contraste de Manchas a Laser , Laparoscopia/métodos , Perfusão
2.
Langenbecks Arch Surg ; 408(1): 114, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859714

RESUMO

PURPOSE: Real-time intraoperative perfusion assessment may reduce anastomotic leaks. Laser speckle contrast imaging (LSCI) provides dye-free visualization of perfusion by capturing coherent laser light scatter from red blood cells and displays perfusion as a colormap. Herein, we report a novel method to precisely quantify intestinal perfusion using LSCI. METHODS: ActivSight™ is an FDA-cleared multi-modal visualization system that can detect and display perfusion via both indocyanine green imaging (ICG) and LSCI in minimally invasive surgery. An experimental prototype LSCI perfusion quantification algorithm was evaluated in porcine models. Porcine small bowel was selectively devascularized to create regions of perfused/watershed/ischemic bowel, and progressive aortic inflow/portal vein outflow clamping was performed to study arterial vs. venous ischemia. Continuous arterial pressure was monitored via femoral line. RESULTS: LSCI perfusion colormaps and quantification distinguished between perfused, watershed, and ischemic bowel in all vascular control settings: no vascular occlusion (p < 0.001), aortic occlusion (p < 0.001), and portal venous occlusion (p < 0.001). LSCI quantification demonstrated similar levels of ischemia induced both by states of arterial inflow and venous outflow occlusion. LSCI-quantified perfusion values correlated positively with higher mean arterial pressure and with increasing distance from ischemic bowel. CONCLUSION: LSCI relative perfusion quantification may provide more objective real-time assessment of intestinal perfusion compared to conventional naked eye assessment by quantifying currently subjective gradients of bowel ischemia and identifying both arterial/venous etiologies of ischemia.


Assuntos
Artérias , Imagem de Contraste de Manchas a Laser , Suínos , Animais , Perfusão , Algoritmos , Fístula Anastomótica
3.
BMC Surg ; 23(1): 261, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37649010

RESUMO

BACKGROUND/PURPOSE: Real-time quantification of tissue perfusion can improve intraoperative surgical decision making. Here we demonstrate the utility of Laser Speckle Contrast Imaging as an intra-operative tool that quantifies real-time regional differences in intestinal perfusion and distinguishes ischemic changes resulting from arterial/venous obstruction. METHODS: Porcine models (n = 3) consisted of selectively devascularized small bowel loops that were used to measure the perfusion responses under conditions of control/no vascular occlusion, arterial inflow occlusion, and venous outflow occlusion using laser speckle imaging and indocyanine green fluoroscopy. Laser Speckle was also used to assess perfusion differences between small bowel antimesenteric-antimesenteric and mesenteric-mesenteric anastomoses. Perfusion quantification was measured in relative perfusion units calculated from the laser speckle perfusion heatmap. RESULTS: Laser Speckle distinguished between visually identified perfused, watershed, and ischemic intestinal segments with both color heatmap and quantification (p < .00001). It detected a continuous gradient of relative intestinal perfusion as a function of distance from the stapled ischemic bowel edge. Strong positive linear correlation between relative perfusion units and changes in mean arterial pressure resulting from both arterial (R2 = .96/.79) and venous pressure changes (R2 = .86/.96) was observed. Furthermore, Laser Speckle showed that the antimesenteric anastomosis had a higher perfusion than mesenteric anastomosis (p < 0.01). CONCLUSIONS: Laser Speckle Contrast Imaging provides objective, quantifiable tissue perfusion information in both color heatmap and relative numerical units. Laser Speckle can detect spatial/temporal differences in perfusion between antimesenteric and mesenteric borders of a bowel segment and precisely detect perfusion changes induced by progressive arterial/venous occlusions in real-time.


Assuntos
Laparoscopia , Doenças Vasculares , Suínos , Animais , Imagem de Contraste de Manchas a Laser , Perfusão , Intestinos , Artérias
4.
Curr Urol ; 17(2): 141-145, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37691993

RESUMO

Background: When viewed under near-infrared light, indocyanine green (ICG) signal for kidney perfusion can be utilized in partial nephrectomy. Laser speckle contrast imaging (LSCI) uses coherent light to detect perfusion during real-time laparoscopic surgery. Materials and methods: Laser speckle contrast imaging or ActivSight, an imaging sensor adapter, was used during laparoscopy of an anesthetized porcine kidney model. ActivSight's "perfusion mode" and "quantification mode" displayed the blood flow as a heatmap and numerical signal intensity, respectively. Results: After the upper segmental renal artery was clamped, ICG was seen in the lower pole, and LSCI showed low unit (dark color) quantification and perfusion in the upper pole. Indocyanine green was retained in the lower pole after the upper segmental artery was unclamped, and LSCI perfusion was demonstrated in the entire kidney. Conclusions: Laser speckle contrast imaging is a dye-free, repeatable, real-time adjunct for renal parenchymal perfusion assessment applicable to minimally invasive renal surgery to complement the technology of ICG near-infrared fluorescence and advance digital surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA