RESUMO
Carrion scavenging is a well-studied phenomenon, but virtually nothing is known about scavenging on plant material, especially on remnants of cracked nuts. Just like meat, the insides of hard-shelled nuts are high in energetic value, and both foods are difficult to acquire. In the Taï forest, chimpanzees (Pan troglodytes) and red river hogs (Potamochoerus porcus) crack nuts by using tools or strong jaws, respectively. In this study, previously collected non-invasive camera trap data were used to investigate scavenging by sooty mangabeys (Cercocebus atys), two species of Guinea fowl (Agelestres meleagrides; Guttera verreauxi), and squirrels (Scrunidae spp.) on the nut remnants cracked by chimpanzees and red river hogs. We investigated how scavengers located nut remnants, by analyzing their visiting behavior in relation to known nut-cracking events. Furthermore, since mangabeys are infrequently preyed upon by chimpanzees, we investigated whether they perceive an increase in predation risk when approaching nut remnants. In total, 190 nut-cracking events were observed in four different areas of Taï National Park, Ivory Coast. We could confirm that mangabeys scavenged on the nuts cracked by chimpanzees and hogs and that this enabled them to access food source that would not be accessible otherwise. We furthermore found that mangabeys, but not the other species, were more likely to visit nut-cracking sites after nut-cracking activities than before, and discuss the potential strategies that the monkeys could have used to locate nut remnants. In addition, mangabeys showed elevated levels of vigilance at the chimpanzee nut-cracking sites compared with other foraging sites, suggesting that they perceived elevated danger at these sites. Scavenging on remnants of cracked nuts is a hitherto understudied type of foraging behavior that could be widespread in nature and increases the complexity of community ecology in tropical rainforests.
Assuntos
Cercocebus atys/fisiologia , Comportamento Alimentar , Galliformes/fisiologia , Nozes , Sciuridae/fisiologia , Animais , Côte d'Ivoire , Feminino , Masculino , Pan troglodytes , Suínos , Comportamento de Utilização de FerramentasRESUMO
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Assuntos
Efeitos Antropogênicos , Ecossistema , Oceanos e Mares , Tubarões , Animais , Humanos , Sequestro de Carbono , Mudança Climática , Cadeia Alimentar , Atividades Humanas , Comportamento Predatório , Tubarões/fisiologiaRESUMO
Large brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability - in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes.
Assuntos
Comportamento Animal , Pan troglodytes/psicologia , Animais , Ecossistema , Meio Ambiente , Feminino , Florestas , Masculino , Pan troglodytes/fisiologia , Comportamento de Utilização de FerramentasRESUMO
Chimpanzees possess a large number of behavioral and cultural traits among nonhuman species. The "disturbance hypothesis" predicts that human impact depletes resources and disrupts social learning processes necessary for behavioral and cultural transmission. We used a dataset of 144 chimpanzee communities, with information on 31 behaviors, to show that chimpanzees inhabiting areas with high human impact have a mean probability of occurrence reduced by 88%, across all behaviors, compared to low-impact areas. This behavioral diversity loss was evident irrespective of the grouping or categorization of behaviors. Therefore, human impact may not only be associated with the loss of populations and genetic diversity, but also affects how animals behave. Our results support the view that "culturally significant units" should be integrated into wildlife conservation.