RESUMO
Understanding and predicting the relationship between leaf temperature (Tleaf) and air temperature (Tair) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime Tleaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below Tair at higher temperatures (i.e., > â¼25-30°C) leading to slopes <1 in Tleaf/Tair relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature (Tcan) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to Tcan/Tair slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the Tcan/Tair relationship. Canopy structure also plays an important role in Tcan dynamics. Future climate warming is likely to lead to even greater Tcan, with attendant impacts on forest carbon cycling and mortality risk.
Assuntos
Ciclo do Carbono , Carbono , Florestas , Folhas de Planta , Carbono/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , TemperaturaRESUMO
This article comments on: Seeking the "point of no return" in the sequence of events leading to mortality of mature trees.
Assuntos
Transpiração Vegetal , ÁrvoresRESUMO
Strategies for deep soil water acquisition (WAdeep ) are critical to a species' adaptation to drought. However, it is unknown how WAdeep determines the abundance and resource economy strategies of understorey shrub species. With data from 13 understorey shrub species in subtropical coniferous plantations, we investigated associations between the magnitude of WAdeep , the seasonal plasticity of WAdeep , midday leaf water potential (Ψmd ), species abundance and resource economic traits across organs. Higher capacity for WAdeep was associated with higher intrinsic water use efficiency, but was not necessary for maintaining higher Ψmd in the dry season nor was it an ubiquitous trait possessed by the most common shrub species. Species with higher seasonal plasticity of WAdeep had lower wood density, indicating that fast species had higher plasticity in deep soil resource acquisition. However, the magnitude and plasticity of WAdeep were not related to shallow fine root economy traits, suggesting independent dimensions of soil resource acquisition between deep and shallow soil. Our results provide new insights into the mechanisms through which the magnitude and plasticity of WAdeep interact with shallow soil and aboveground resource acquisition traits to integrate the whole-plant economic spectrum and, thus, community assembly processes.
Assuntos
Pinus/fisiologia , Folhas de Planta/fisiologia , Solo/química , Água/metabolismo , Secas , Isótopos de Oxigênio/análise , Fenótipo , Pinus/anatomia & histologia , Folhas de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Estações do Ano , MadeiraRESUMO
The degree of plant iso/anisohydry is a popular framework for characterising species-specific drought responses. However, we know little about associations between below-ground and above-ground hydraulic traits as well as the broader ecological implications of this framework. For 24 understory shrub species in seasonally dry subtropical coniferous plantations, we investigated contributions of the degree of isohydry to species' resource economy strategies, abundance, and importance value, and quantified the hydraulic conductance (Kh ) of above-ground and below-ground organs, magnitude of deep water acquisition (WAdeep ), shallow absorptive root traits (diameter, specific root length, tissue density), and resource-use efficiencies (Amax , maximum photosynthesis rate; PNUE, photosynthetic nitrogen-use efficiency). The extreme isohydric understory species had lower wood density (a proxy for higher growth rates) because their higher WAdeep and whole-plant Kh allowed higher Amax and PNUE, and thus did not necessarily show lower abundance and importance values. Although species' Kh was coordinated with their water foraging capacity in shallow soil, the more acquisitive deep roots were more crucial than shallow roots in shaping species' extreme isohydric behaviour. Our results provide new insights into the mechanisms through which below-ground hydraulic traits, especially those of deep roots, determine species' degree of isohydry and economic strategies.
Assuntos
Pinus , Secas , Solo , Água , MadeiraRESUMO
The extent to which water availability can be used to predict the enlargement and final dimensions of xylem conduits remains an open issue. We reconstructed the time course of tracheid enlargement in Pinus sylvestris trees in central Spain by repeated measurements of tracheid diameter on microcores sampled weekly during a 2 yr period. We analyzed the role of water availability in these dynamics empirically through time-series correlation analysis and mechanistically by building a model that simulates daily tracheid enlargement rate and duration based on Lockhart's equation and water potential as the sole input. Tracheid enlargement followed a sigmoid-like time course, which varied intra- and interannually. Our empirical analysis showed that final tracheid diameter was strongly related to water availability during tracheid enlargement. The mechanistic model was calibrated and successfully validated (R2 = 0.92) against the observed tracheid enlargement time course. The model was also able to reproduce the seasonal variations of tracheid enlargement rate, duration and final diameter (R2 = 0.84-0.99). Our results support the hypothesis that tracheid enlargement and final dimensions can be modeled based on the direct effect of water potential on turgor-driven cell expansion. We argue that such a mechanism is consistent with other reported patterns of tracheid dimension variation.
Assuntos
Pinus sylvestris/fisiologia , Água/metabolismo , Xilema/fisiologia , Modelos Biológicos , Pinus/anatomia & histologia , Pinus sylvestris/anatomia & histologia , Estações do Ano , Espanha , Árvores , Xilema/anatomia & histologiaRESUMO
The ratio of leaf internal (ci ) to ambient (ca ) partial pressure of CO2 , defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation model uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least-cost optimality hypothesis for modelling historical changes in χ over the 1951-2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely dated tree-ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the intersite variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant-available soil water and other site-specific characteristics might improve the predictions.
Assuntos
Dióxido de Carbono , Fotossíntese , Isótopos de Carbono , Folhas de Planta , ÁguaRESUMO
The vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
Assuntos
Componentes Aéreos da Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Água/fisiologia , Clima , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Solo , Madeira/química , Madeira/fisiologia , Xilema/fisiologiaRESUMO
The degree of plant iso/anisohydry, a widely used framework for classifying species-specific hydraulic strategies, integrates multiple components of the whole-plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD-induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade-off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.
Assuntos
Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Cinética , Folhas de Planta/anatomia & histologia , Caules de Planta/citologia , Transpiração Vegetal/fisiologia , Plantas/anatomia & histologia , Especificidade da Espécie , Água , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Xilema/citologia , Xilema/fisiologiaRESUMO
A century of fire suppression across the Western United States has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here, we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree-ring growth, fire scars, and carbon isotope discrimination (Δ13 C) across a dry mixed-conifer forest landscape. Fire deficits across the study area have increased the sensitivity of leaf gas exchange to drought stress over the past >100 years. Since 1910, stand basal area in these forests has more than doubled and fire-return intervals have increased from 25 to 140 years. Meanwhile, the portion of interannual variation in tree-ring Δ13 C explained by the Palmer Drought Severity Index has more than doubled in ca. 300-500-year-old Pinus ponderosa as well as in fire-intolerant, ca. 90-190-year-old Abies grandis. Drought stress has increased in stands with a basal area of ≥25 m2 /ha in 1910, as indicated by negative temporal Δ13 C trends, whereas stands with basal area ≤25 m2 /ha in 1910, due to frequent or intense wildfire activity in decades beforehand, were initially buffered from increased drought stress and have benefited more from rising ambient carbon dioxide concentrations, [CO2 ], as demonstrated by positive temporal Δ13 C trends. Furthermore, the average Δ13 C response across all P. ponderosa since 1830 indicates that photosynthetic assimilation rates and stomatal conductance have been reduced by ~10% and ~20%, respectively, compared to expected trends due to increasing [CO2 ]. Although disturbance legacies contribute to local-scale intensity of drought stress, fire deficits have reduced drought resistance of mixed-conifer forests and made them more susceptible to challenges by pests and pathogens and other disturbances.
RESUMO
The original version of this article unfortunately contained a mistake. The Electronic supplementary material (ESM) was accompanying this article by mistake.
RESUMO
Stomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon-maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.
Assuntos
Secas , Estômatos de Plantas , Ecossistema , Estômatos de Plantas/fisiologia , Água , Ciclo HidrológicoRESUMO
The frequently observed forest decline in water-limited regions may be associated with impaired tree hydraulics, but the precise physiological mechanisms remain poorly understood. We compared hydraulic architecture of Mongolian pine (Pinus sylvestris var. mongolica) trees of different size classes from a plantation and a natural forest site to test whether greater hydraulic limitation with increasing size plays an important role in tree decline observed in the more water-limited plantation site. We found that trees from plantations overall showed significantly lower stem hydraulic efficiency. More importantly, plantation-grown trees showed significant declines in stem hydraulic conductivity and hydraulic safety margins as well as syndromes of stronger drought stress with increasing size, whereas no such trends were observed at the natural forest site. Most notably, the leaf to sapwood area ratio (LA/SA) showed a strong linear decline with increasing tree size at the plantation site. Although compensatory adjustments in LA/SA may mitigate the effect of increased water stress in larger trees, they may result in greater risk of carbon imbalance, eventually limiting tree growth at the plantation site. Our results provide a potential mechanistic explanation for the widespread decline of Mongolian pine trees in plantations of Northern China.
Assuntos
Agricultura Florestal , Pinus sylvestris/crescimento & desenvolvimento , Envelhecimento/fisiologia , China , Pinus sylvestris/fisiologia , Transpiração Vegetal , Água/metabolismoRESUMO
Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed.
Assuntos
Gases/metabolismo , Fotossíntese , Estômatos de Plantas/fisiologia , Plantas/metabolismo , Água/fisiologia , Cinética , Luz , Nitrogênio/metabolismo , Fotossíntese/efeitos da radiação , Estômatos de Plantas/efeitos da radiação , Especificidade da Espécie , Fatores de TempoRESUMO
To test tree growth sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. Paleo oaks were sampled from Northern Missouri, USA and compared to a pollen-based, high-resolution paleo temperature reconstruction from Northern Illinois, USA. Growth data were from 53 paleo bur oak log cross sections collected in Missouri. These oaks were preserved in river and stream sediments and were radiocarbon-dated to a period of rapid climate change during the last deglaciation (10.5 and 13.3 cal kyr BP). Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data collected across the Great Plains, Midwest, and Upper Great Lakes regions. For modern oaks growing at an average [CO2] of 330 ppm, growth sensitivity to temperature (i.e., the slope of growth rate versus temperature) was about twice that of paleo oaks growing at an average [CO2] of 230 ppm. These data help to confirm that leaf-level predictions that photosynthesis and thus growth will be more sensitive to temperature at higher [CO2] in mature trees-suggesting that tree growth forest productivity will be increasingly sensitive to temperature under projected global warming and high-[CO2] conditions.
Assuntos
Temperatura , Árvores , Dióxido de Carbono , Mudança Climática , QuercusRESUMO
Many hectares of intensively managed Douglas-fir (Pseudotsuga menziesii Mirb. Franco) stands in western North America are fertilized with nitrogen (N) to increase growth rates, but only about â of all stands respond. Understanding the mechanisms of response facilitates prioritization of stands for treatment. The primary objective of this study was to test the hypothesis that the short-term basal area growth response to a single application of 224 kg N ha-1 as urea was associated with reduced stable carbon isotope discrimination (Δ13C) and increased intrinsic water use efficiency (iWUE) in a 20-yr-old plantation of Douglas-fir in the Oregon Coast Range, USA. Increment cores were measured to estimate earlywood, latewood, and total basal area increment over a time series from 1997 to 2015. Stable carbon isotope discrimination and iWUE were estimated using earlywood and latewood stable carbon isotope concentrations in tree-ring holocellulose starting seven years before fertilization in early 2009 and ending seven years after treatment. A highly significant (p<0.01) interaction effect between fertilization treatment and year was found for total basal area growth and earlywood basal area increment. Specifically, fertilized trees showed significant responses (p<0.05) in total basal area growth and earlywood basal area increment in the first (2009) and second (2010) growing seasons after fertilization in 2009. A marginally significant (p<0.10) fertilization effect was found for latewood basal area increment only in the first growing season after treatment. A significant treatment x year interaction was also found for Δ13C and iWUE in earlywood and latewood. Fertilization significantly reduced earlywood Δ13C and increased earlywood iWUE in the first and second growing seasons after fertilization. Only a marginally significant fertilization effect was detected for latewood Δ13C and iWUE in the second growing season after treatment. Previous studies of N fertilization of Douglas-fir forests have reported consistently increased growth and iWUE on low productivity sites treated with relatively high fertilization rates. This study suggested that these responses can also be observed on highly productive sites despite their lower frequency and apparently shorter duration. Other key mechanisms driving growth responses appear less important than iWUE, including an increase in LAI and shift from belowground to aboveground carbon allocation.
RESUMO
The concept of iso- vs. anisohydry has been used to describe the stringency of stomatal regulation of plant water potential (ψ). However, metrics that accurately and consistently quantify species' operating ranges along a continuum of iso- to anisohydry have been elusive. Additionally, most approaches to quantifying iso/anisohydry require labour-intensive measurements during prolonged drought. We evaluated new and previously developed metrics of stringency of stomatal regulation of ψ during soil drying in eight woody species and determined whether easily-determined leaf pressure-volume traits could serve as proxies for their degree of iso- vs. anisohydry. Two metrics of stringency of stomatal control of ψ, (1) a 'hydroscape' incorporating the landscape of ψ over which stomata control ψ, and (2) the slope of the daily range of ψ as pre-dawn ψ declined, were strongly correlated with each other and with the leaf osmotic potential at full and zero turgor derived from pressure-volume curves.
Assuntos
Magnoliopsida/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Água/metabolismo , Ambiente ControladoRESUMO
Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.
Assuntos
Ecossistema , Árvores/fisiologia , Água/fisiologia , Ciclo HidrológicoRESUMO
Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.
Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Árvores/metabolismo , Isótopos de Carbono/metabolismo , Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Estômatos de Plantas/metabolismoRESUMO
Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P50) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P50 only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season.