Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 20(1): 5-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30228348

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that inhibit the expression of target genes by directly binding to their mRNAs. miRNAs are transcribed as precursor molecules, which are subsequently cleaved by the endoribonucleases Drosha and Dicer. Mature miRNAs are bound by a member of the Argonaute (AGO) protein family to form the RNA-induced silencing complex (RISC) in a process termed RISC loading. Advances in structural analyses of Drosha and Dicer complexes enabled elucidation of the mechanisms that drive these molecular machines. Transcription of miRNAs, their processing by Drosha and Dicer and RISC loading are key steps in miRNA biogenesis, and various additional factors facilitate, support or inhibit these processes. Recent work has revealed that regulatory factors not only coordinate individual miRNA processing steps but also connect miRNA biogenesis with other cellular processes. Protein phosphorylation, for example, links miRNA biogenesis to various signalling pathways, and such modifications are often associated with disease. Furthermore, not all miRNAs follow canonical processing routes, and many non-canonical miRNA biogenesis pathways have recently been characterized.

2.
Nat Rev Mol Cell Biol ; 20(5): 321, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30728477

RESUMO

The legend of Figure 2 neglected to acknowledge that part b was adapted with permission from ref.46, Elsevier and that part d, third panel from the left was reproduced from ref.62, Springer Nature Limited. The change has been made in the HTML and PDF versions of the manuscript.

3.
Nat Rev Mol Cell Biol ; 19(12): 808, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30270345

RESUMO

In Figure 1b, the GHG sequence motif in the primary microRNA has been moved to the basal stem and the ruler of the basal stem has been shortened to more precisely delineate 11 base pairs. The changes have been made in the HTML and PDF versions of the manuscript.

4.
Mol Cell ; 82(9): 1608-1609, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523125

RESUMO

YTH proteins utilize YTH domains to interact with N6-methyladenines (m6A); however, Li et al. (2022) show that YTHDC2 binds U-rich motifs instead and functions independently of m6A through its unusual DExD helicase domain during spermatogenesis in mice and fish.


Assuntos
RNA Helicases , Espermatogênese , Animais , Masculino , Camundongos , RNA Helicases/metabolismo , Espermatogênese/genética
5.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774131

RESUMO

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Assuntos
Metiltransferases/metabolismo , RNA Mitocondrial/química , RNA de Transferência/química , Animais , Anticódon , Proliferação de Células , Códon , Citoplasma , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais , Proteínas Mitocondriais/química , Consumo de Oxigênio , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Ribossomos/metabolismo , Regulação para Cima
6.
Nature ; 605(7910): 539-544, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508655

RESUMO

Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation1,2. A long appreciated, yet undefined relationship exists between the lytic-latent switch and viral non-coding RNAs3,4. Here we identify viral microRNA (miRNA)-mediated inhibition of host miRNA processing as a cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defences and drive the switch from latent to lytic virus infection. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective primary (pri)-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30-p53-DRP1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily druggable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 will provide new therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.


Assuntos
Herpesviridae , MicroRNAs , Herpesviridae/genética , Herpesviridae/metabolismo , Humanos , Evasão da Resposta Imune , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , Latência Viral/genética
7.
Mol Cell ; 77(5): 1014-1031.e13, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017898

RESUMO

The La-related protein 7 (LARP7) forms a complex with the nuclear 7SK RNA to regulate RNA polymerase II transcription. It has been implicated in cancer and the Alazami syndrome, a severe developmental disorder. Here, we report a so far unknown role of this protein in RNA modification. We show that LARP7 physically connects the spliceosomal U6 small nuclear RNA (snRNA) with a distinct subset of box C/D small nucleolar RNAs (snoRNAs) guiding U6 2'-O-methylation. Consistently, these modifications are severely compromised in the absence of LARP7. Although general splicing remains largely unaffected, transcriptome-wide analysis revealed perturbations in alternative splicing in LARP7-depleted cells. Importantly, we identified defects in 2'-O-methylation of the U6 snRNA in Alazami syndrome siblings carrying a LARP7 mutation. Our data identify LARP7 as a bridging factor for snoRNA-guided modification of the U6 snRNA and suggest that alterations in splicing fidelity contribute to the etiology of the Alazami syndrome.


Assuntos
Processamento Alternativo , Deficiências do Desenvolvimento/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Criança , Pré-Escolar , Sequência Conservada , Deficiências do Desenvolvimento/genética , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Metilação , Pessoa de Meia-Idade , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Nuclear Pequeno/genética , Ribonucleoproteínas/genética , Spliceossomos/genética
8.
Mol Cell ; 77(5): 999-1013.e6, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017896

RESUMO

U6 snRNA, as an essential component of the catalytic core of the pre-mRNA processing spliceosome, is heavily modified post-transcriptionally, with 2'-O-methylation being most common. The role of these modifications in pre-mRNA splicing as well as their physiological function in mammals have remained largely unclear. Here we report that the La-related protein LARP7 functions as a critical cofactor for 2'-O-methylation of U6 in mouse male germ cells. Mechanistically, LARP7 promotes U6 loading onto box C/D snoRNP, facilitating U6 2'-O-methylation by box C/D snoRNP. Importantly, ablation of LARP7 in the male germline causes defective U6 2'-O-methylation, massive alterations in pre-mRNA splicing, and spermatogenic failure in mice, which can be rescued by ectopic expression of wild-type LARP7 but not an U6-loading-deficient mutant LARP7. Our data uncover a novel role of LARP7 in regulating U6 2'-O-methylation and demonstrate the functional requirement of such modification for splicing fidelity and spermatogenesis in mice.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Spliceossomos/metabolismo , Animais , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Transdução de Sinais , Espermatogênese/genética , Spliceossomos/genética
9.
Mol Cell ; 71(2): 271-283.e5, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029005

RESUMO

LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Células-Tronco Embrionárias , Células Hep G2 , Humanos , Células K562 , Camundongos , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética
10.
EMBO Rep ; 24(11): e57250, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712432

RESUMO

MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Inativação Gênica , Serina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Cell ; 140(5): 612-4, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20211130

RESUMO

MicroRNAs interact with Argonaute proteins to guide posttranscriptional gene silencing. Eiring et al. (2010) now show that miR-328 has a second function, acting as a decoy by binding to hnRNP E2 and lifting its translational repression of an mRNA involved in myeloid cell differentiation.

12.
Mol Cell ; 66(2): 270-284.e13, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431233

RESUMO

During microRNA (miRNA) biogenesis, two endonucleolytic reactions convert stem-loop-structured precursors into mature miRNAs. These processing steps can be posttranscriptionally regulated by RNA-binding proteins (RBPs). Here, we have used a proteomics-based pull-down approach to map and characterize the interactome of a multitude of pre-miRNAs. We identify ∼180 RBPs that interact specifically with distinct pre-miRNAs. For functional validation, we combined RNAi and CRISPR/Cas-mediated knockout experiments to analyze RBP-dependent changes in miRNA levels. Indeed, a large number of the investigated candidates, including splicing factors and other mRNA processing proteins, have effects on miRNA processing. As an example, we show that TRIM71/LIN41 is a potent regulator of miR-29a processing and its inactivation directly affects miR-29a targets. We provide an extended database of RBPs that interact with pre-miRNAs in extracts of different cell types, highlighting a widespread layer of co- and posttranscriptional regulation of miRNA biogenesis.


Assuntos
MicroRNAs/biossíntese , Precursores de RNA/biossíntese , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Células A549 , Sítios de Ligação , Sistemas CRISPR-Cas , RNA Helicases DEAD-box/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica , Genômica/métodos , Células HEK293 , Células HeLa , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Jurkat , Células MCF-7 , MicroRNAs/química , MicroRNAs/genética , Conformação de Ácido Nucleico , Ligação Proteica , Proteômica/métodos , Interferência de RNA , Precursores de RNA/química , Precursores de RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/metabolismo , Análise de Sequência de RNA , Relação Estrutura-Atividade , Transfecção , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Nucleic Acids Res ; 51(13): e68, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246712

RESUMO

Ribosome profiling provides quantitative, comprehensive, and high-resolution snapshots of cellular translation by the high-throughput sequencing of short mRNA fragments that are protected by ribosomes from nucleolytic digestion. While the overall principle is simple, the workflow of ribosome profiling experiments is complex and challenging, and typically requires large amounts of sample, limiting its broad applicability. Here, we present a new protocol for ultra-rapid ribosome profiling from low-input samples. It features a robust strategy for sequencing library preparation within one day that employs solid phase purification of reaction intermediates, allowing to reduce the input to as little as 0.1 pmol of ∼30 nt RNA fragments. Hence, it is particularly suited for the analyses of small samples or targeted ribosome profiling. Its high sensitivity and its ease of implementation will foster the generation of higher quality data from small samples, which opens new opportunities in applying ribosome profiling.


Assuntos
Perfil de Ribossomos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biossíntese de Proteínas , Perfil de Ribossomos/métodos , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Hum Mol Genet ; 31(6): 875-887, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34605899

RESUMO

MicroRNAs (miRNAs) are small post-transcriptional regulators that offer promising targets for treating complex diseases. To this end, hsa-miR-4513 is an excellent candidate as this gene harbors within its conserved heptametrical seed sequence a frequent polymorphism (rs2168518), which has previously been associated with several complex phenotypes. So far, little is known about the biological mechanism(s) underlying these associations. In an initial step, we now aimed to identify allele-specific target genes of hsa-miR-4513. We performed RNA sequencing in a miRNA overexpression model in human umbilical vein endothelial cells transfected with separated hsa-miR-4513 alleles at rs2168518, namely hsa-miR-4513-G and hsa-miR-4513-A. Genes specifically regulated by the rs2168518 alleles were independently verified by quantitative reverse transcription PCR (qRT-PCR), western blot analysis and allele-specific miRNA binding via a luciferase reporter assay. By a text-based search publicly available databases such as Online Mendelian Inheritance in Man and Mouse Genome Informatics were utilized to link target genes of hsa-miR-4513 to previously described phenotypes. Overall, we identified 23 allele-specific hsa-miR-4513 target genes and replicated 19 of those independently via qRT-PCR. Western blot analysis and luciferase reporter assays conducted for an exemplary subsample further confirmed the allele-specific regulation of these genes by hsa-miR-4513. Remarkably, multiple allele-specific target genes identified are linked via text retrieval to several phenotypes previously reported to be associated with hsa-miR-4513. These genes offer promising candidates for ongoing research on the functional pathobiological impact of hsa-miR-4513 and its seed polymorphism rs2168518. This could give rise to therapeutic applications targeting this miRNA.


Assuntos
Células Endoteliais , MicroRNAs , Alelos , Animais , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , MicroRNAs/metabolismo
15.
EMBO J ; 39(18): e103922, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32812257

RESUMO

Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein-level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double-stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA-induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Fatores de Iniciação em Eucariotos/metabolismo , Interferons/metabolismo , Proteínas de Neoplasias/metabolismo , RNA de Cadeia Dupla/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Argonautas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Iniciação em Eucariotos/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Interferons/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética
16.
PLoS Pathog ; 18(2): e1010266, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134097

RESUMO

Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , RNA Helicases DEAD-box/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Febre Q/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Apoptose , Sobrevivência Celular , Coxiella burnetii/genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutação , Febre Q/microbiologia , Células THP-1
17.
Mol Psychiatry ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938765

RESUMO

Social interactions are critical for mammalian survival and evolution. Dysregulation of social behavior often leads to psychopathologies such as social anxiety disorder, denoted by intense fear and avoidance of social situations. Using the social fear conditioning (SFC) paradigm, we analyzed expression levels of miR-132-3p and miR-124-3p within the septum, a brain region essential for social preference and avoidance behavior, after acquisition and extinction of social fear. Here, we found that SFC dynamically altered both microRNAs. Functional in vivo approaches using pharmacological strategies, inhibition of miR-132-3p, viral overexpression of miR-132-3p, and shRNA-mediated knockdown of miR-132-3p specifically within oxytocin receptor-positive neurons confirmed septal miR-132-3p to be critically involved not only in social fear extinction, but also in oxytocin-induced reversal of social fear. Moreover, Argonaute-RNA-co-immunoprecipitation-microarray analysis and further in vitro and in vivo quantification of target mRNA and protein, revealed growth differentiation factor-5 (Gdf-5) as a target of miR-132-3p. Septal application of GDF-5 impaired social fear extinction suggesting its functional involvement in the reversal of social fear. In summary, we show that septal miR-132-3p and its downstream target Gdf-5 regulate social fear expression and potentially mediate oxytocin-induced reversal of social fear.

18.
Fish Shellfish Immunol ; 151: 109693, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878913

RESUMO

Argonaute proteins are key constituents of small RNA-guided regulatory pathways. In crustaceans, members of the AGO subfamily of Argonaute proteins that play vital roles in immune defense are well studied, while proteins of the PIWI subfamily are less established. PmAgo4 of the black tiger shrimp, Penaeus monodon, though phylogenetically clustered with the AGO subfamily, has distinctive roles of the PIWI subfamily in safeguarding the genome from transposon invasion and controlling germ cell development. This study explored a molecular mechanism by which PmAgo4 regulates transposon expression in the shrimp germline. PmAgo4-associated small RNAs were co-immunoprecipitated from shrimp testis lysate using a PmAgo4-specific polyclonal antibody. RNA-seq revealed a majority of 26-27 nt long small RNAs in the PmAgo4-IP fraction suggesting that PmAgo4 is predominantly associated with piRNAs. Mapping of these piRNAs on nucleotide sequences of two gypsy and a mariner-like transposons of P. monodon suggested that most piRNAs were originated from the antisense strand of transposons. Suppression of PmAgo4 expression by a specific dsRNA elevated the expression levels of the three transposons while decreasing the levels of transposon-related piRNAs. Taken together, these results imply that PmAgo4 exerts its suppressive function on transposons by controlling the biogenesis of transposon-related piRNAs and thus, provides a defense mechanism against transposon invasion in shrimp germline cells.


Assuntos
Proteínas Argonautas , Elementos de DNA Transponíveis , Penaeidae , RNA Interferente Pequeno , Animais , Penaeidae/imunologia , Penaeidae/genética , Elementos de DNA Transponíveis/genética , RNA Interferente Pequeno/genética , Proteínas Argonautas/genética , Proteínas Argonautas/imunologia , Proteínas Argonautas/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , RNA de Interação com Piwi
19.
Cell ; 136(3): 496-507, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19167051

RESUMO

Small regulatory RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide Argonaute (Ago) proteins to specific target RNAs leading to mRNA destabilization or translational repression. Here, we report the identification of Importin 8 (Imp8) as a component of miRNA-guided regulatory pathways. We show that Imp8 interacts with Ago proteins and localizes to cytoplasmic processing bodies (P bodies), structures involved in RNA metabolism. Furthermore, we detect Ago2 in the nucleus of HeLa cells, and knockdown of Imp8 reduces the nuclear Ago2 pool. Using immunoprecipitations of Ago2-associated mRNAs followed by microarray analysis, we further demonstrate that Imp8 is required for the recruitment of Ago protein complexes to a large set of Ago2-associated target mRNAs, allowing for efficient and specific gene silencing. Therefore, we provide evidence that Imp8 is required for cytoplasmic miRNA-guided gene silencing and affects nuclear localization of Ago proteins.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Argonautas , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Inativação Gênica , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/metabolismo , MicroRNAs/metabolismo
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA