Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Technol ; 56(16): 11865-11877, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35929951

RESUMO

Biocrusts covering drylands account for major fractions of terrestrial biological nitrogen fixation and release large amounts of gaseous reactive nitrogen (Nr) as nitrous acid (HONO) and nitric oxide (NO). Recent investigations suggested that aerobic and anaerobic microbial nitrogen transformations occur simultaneously upon desiccation of biocrusts, but the spatio-temporal distribution of seemingly contradictory processes remained unclear. Here, we explore small-scale gradients in chemical concentrations related to structural characteristics and organism distribution. X-ray microtomography and fluorescence microscopy revealed mixed pore size structures, where photoautotrophs and cyanobacterial polysaccharides clustered irregularly in the uppermost millimeter. Microsensor measurements showed strong gradients of pH, oxygen, and nitrite, nitrate, and ammonium ion concentrations at micrometer scales in both vertical and lateral directions. Initial oxygen saturation was mostly low (∼30%) at full water holding capacity, suggesting widely anoxic conditions, and increased rapidly upon desiccation. Nitrite concentrations (∼6 to 800 µM) and pH values (∼6.5 to 9.5) were highest around 70% WHC. During further desiccation they decreased, while emissions of HONO and NO increased, reaching maximum values around 20% WHC. Our results illustrate simultaneous, spatially separated aerobic and anaerobic nitrogen transformations, which are critical for Nr emissions, but might be impacted by future global change and land management.


Assuntos
Cianobactérias , Solo , Óxido Nítrico , Nitritos , Nitrogênio/análise , Ácido Nitroso/química , Óxido Nitroso/análise , Solo/química
2.
BMC Plant Biol ; 19(1): 380, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470797

RESUMO

BACKGROUND: After uptake from soil into the root tissue, distribution and allocation of nitrate throughout the whole plant body, is a critical step of nitrogen use efficiency (NUE) and for modulation of plant growth in response to various environmental conditions. In legume plants nitrate distribution is also important for the regulation of the nodulation process that allows to fix atmospheric N (N2) through the symbiotic interaction with rhizobia (symbiotic nitrogen fixation, SNF). RESULTS: Here we report the functional characterization of the Lotus japonicus gene LjNPF2.9, which is expressed mainly in the root vascular structures, a key localization for the control of nitrate allocation throughout the plant body. LjNPF2.9 expression in Xenopus laevis oocytes induces 15NO3 accumulation indicating that it functions as a nitrate importer. The phenotypic characterization of three independent knock out mutants indicates an increased shoot biomass in the mutant backgrounds. This phenotype is associated to an increased/decreased nitrate content detected in the shoots/roots. Furthermore, our analysis indicates that the accumulation of nitrate in the shoot does not affect the nodulation and N-Fixation capacities of the knock out mutants. CONCLUSIONS: This study shows that LjNPF2.9 plays a crucial role in the downward transport of nitrate to roots, occurring likely through a xylem-to-phloem loading-mediated activity. The increase of the shoot biomass and nitrate accumulation might represent a relevant phenotype in the perspective of an improved NUE and this is further reinforced in legume plants by the reported lack of effects on the SNF efficiency.


Assuntos
Lotus/fisiologia , Proteínas de Membrana Transportadoras/genética , Nitratos/metabolismo , Proteínas de Plantas/genética , Simbiose , Biomassa , Lotus/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
3.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176430

RESUMO

Addressing the impacts of climate change and global warming has become an urgent priority for the planet's well-being. In recent decades the great potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. These new materials present the added advantage of having a reduced carbon footprint, less environmental impact and contributing to the shift away from a fossil-based economy. This study focused on the production of insulation panels using fungal mycelium and lignocellulosic materials as substrates. The process was optimized, starting with the selection of Trametes versicolor, Pleurotus ostreatus, P. eryngii, Ganoderma carnosum and Fomitopsis pinicola isolates, followed by the evaluation of three grain spawn substrates (millet, wheat and a 1:1 mix of millet and wheat grains) for mycelium propagation, and finishing with the production of various mycelium-based composites using five wood by-products and waste materials (pine sawdust, oak shavings, tree of heaven wood chips, wheat straw and shredded beech wood). The obtained biomaterials were characterized for internal structure by X-ray micro-CT, thermal transmittance using a thermoflowmeter and moisture absorption. The results showed that using a wheat and millet 1:1 (w/w) mix is the best option for spawn production regardless of the fungal isolate. In addition, the performance of the final composites was influenced both by the fungal isolate and the substrate used, with the latter having a stronger effect on the measured properties. The study shows that the most promising sustainable insulating biomaterial was created using T. versicolor grown on wheat straw.

4.
MethodsX ; 7: 100860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274336

RESUMO

The counting of leaf epidermal cells is useful to study the plant developmental changes produced by environmental or genetic factors. The scanning electron microscopy can be used, but it is expensive and time-consuming. Methods using optical microscopy are also available, but they still require leaves pre-treatment and manual cell identification. We propose a quick and simple method for counting leaf epidermal cells without leaf treatments and based on automated cell identification and marking. It allows to highly improve the representativeness of leaf epidermis screening, aiming at a high-throughput plant phenotyping approach.•The leaves are pressed between two glass slides without any pre-treatment and digital micrographs are acquired under incident light.•Epidermal cells are automatically identified and counted by means of a "macro" of ImageJ•The cell count obtained applying the procedure of image processing is very close to that obtainable by manual cell identification.

5.
Food Res Int ; 134: 109211, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517938

RESUMO

X-ray micro-CT imaging has been applied successfully in food science and seed research due to its capacity to provide very small details of seed traits that are very complex to score. The micropyle and the tissues of the hilum region of bean seeds are recognized as structures which play an important role in hydration process. This latter influences, in turn, not only germination but also the cooking and industrial processing. Nevertheless, the role of each structure of the bean seeds is yet to be fully understood. Moreover such traits are never been quantified by using 3D imaging approaches. In this work, seeds of four ancient Italian landraces of beans have been scanned by X-ray microCT with a twofold approach: bulk scans for whole seed imaging and single seed scans for internal traits measurements. Then water uptake tests have been performed. The different structures composing the hilum region of the beans have been imaged and characterized. The two-dimensional and the three-dimensional morphometric traits have been correlated with parameters of hydration models by Principal Component Analysis (PCA) and Pearson coefficients. Micropyle groove area was the trait most influencing the very initial hydration rates while the hilum groove area was the best correlated with the overall infiltration behavior. The internal free space was the trait best correlated with the moisture at equilibrium. Moreover, strophiole shape resulted the most suitable internal trait for univocal identification of the four landraces. Overall results give a contribution to the understanding of the role of hilum region structures in bean seeds hydration process and show novel morphological traits useful for identification of local bean landraces.


Assuntos
Imageamento Tridimensional , Phaseolus , Sementes , Água , Microtomografia por Raio-X
6.
Front Plant Sci ; 10: 1547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824550

RESUMO

Understanding how plants respond to spaceflight and extraterrestrial environments is crucial to develop life-support systems intended for long-term human explorations. Gravity is a main factor influencing root development and orientation, typically masking other tropisms. Considering that reduced levels of gravity affect many plant responses in space, the interaction of other tropic stimuli in microgravity represents the frontier to be investigated aiming at life-support systems optimization. In this paper we report on MULTITROP (Multiple-Tropism: interaction of gravity, nutrient and water stimuli for root orientation in microgravity), an experiment performed on the International Space Station during the Expedition 52/53. Scientific aim of the experiment was to disentangle hydrotropism from chemotropism for root orientation in absence of the gravity stimulus. Among several species relevant to space farming, Daucus carota was selected for the experiment because of its suitability with the experimental hardware and setup. At launch site, carrot seeds were placed between two disks of inert substrate (one imbibed with water and the other with a disodium phosphate solution) and integrated into a hardware developed, refurbished and flight-certificated by Kayser Italia. Post-flight, a Ground Reference Experiment was performed. Root development and orientation of seedlings grown in microgravity and at 1g condition were measured through 3D-image analysis procedures after imaging with X-ray microtomography. Radicle protruded preferentially from the ventral side of the seed due to the asymmetric position of the embryo. Such a phenomenon did not prevent the achievement of MULTITROP scientific goal but should be considered for further experiments on radicle growth orientation in microgravity. The experiment conducted in space verified that the primary root of carrot shows a positive chemotropism towards disodium phosphate solution in the absence of the gravity stimulus. On Earth, the positive chemotropism was masked by the dominant effect of gravity and roots developed downward regardless of the presence/absence of nutrients in the substrate. Taking advantage of altered gravity conditions and using other chemical compounds, further studies should be performed to deepen our understanding of root chemotropic response and its interaction with other tropisms.

7.
Phytochemistry ; 110: 120-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25435172

RESUMO

From the aerial parts of Salvia adenophora Fernald four derivatives of 12-oxo-phytodienoic acid (1-4) together with five clerodane diterpenoids (5, 6, 8-10), and one known diterpene (7) have been isolated. Compounds 1-6 and 8-10 are described for the first time. The structures were established by extensive 1D, 2D NMR and HRESI-TOFMS spectroscopic methods. Finally, the absolute configuration has been established by comparing of experimental and quantum chemical calculation of ECD spectra. Despite a total lack of antimicrobial activity of the plant extract, hinting to the existence of antagonistic interactions in the crude material, three oxylipins (2-4) displayed a promising inhibition on Gram-positive multidrug-resistant clinical strains including Staphylococcus aureus, Streptococcus agalactiae and, particularly, Staphylococcus epidermidis, while the compounds 9 and 10 revealed a specific and strain-dependent activity against S. epidermidis. Interestingly, the inhibition provided by these compounds was independent of the resistance patterns of these pathogens to classic antibiotics. No action was reported on Gram-negative strains nor on Candida albicans. These results confirm that clerodanes and, particularly, prostaglandin-like compounds can be considered as interesting antimicrobial agents deserving further study.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Diterpenos Clerodânicos/isolamento & purificação , Diterpenos Clerodânicos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Ácidos Graxos Insaturados/isolamento & purificação , Ácidos Graxos Insaturados/farmacologia , Salvia/química , Antibacterianos/química , Campanulaceae , Candida albicans/efeitos dos fármacos , Diterpenos/química , Diterpenos Clerodânicos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Ácidos Graxos Insaturados/química , Humanos , Itália , Testes de Sensibilidade Microbiana , Estrutura Molecular , Componentes Aéreos da Planta/química , Raízes de Plantas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Estereoisomerismo
8.
Nat Prod Commun ; 9(11): 1581-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25532286

RESUMO

Three polyprenyl-1',4'-hydroquinone derivatives, heptaprenyl-1',4'-hydroquinone (1), octaprenyl-1',4'-hydroquinone (2), and hydroxyoctaprenyl-1',4'- hydroquinone (3) were isolated from the marine sponge Sarcotragus spinosulus collected at Baia di Porto Conte, Alghero (Italy). Our findings indicate that the compounds isolated from S. spinosulus can significantly modulate the release of glutamate and acetylcholine in the rat hippocampus and cortex and might, therefore, represent the prototype of a new class of drugs regulating glutamatergic and cholinergic transmission in the mammalian central nervous system.


Assuntos
Acetilcolina/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Hidroquinonas/química , Hidroquinonas/farmacologia , Poríferos/química , Animais , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA