Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7897): 503-509, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110735

RESUMO

The adoptive transfer of T lymphocytes reprogrammed to target tumour cells has demonstrated potential for treatment of various cancers1-7. However, little is known about the long-term potential and clonal stability of the infused cells. Here we studied long-lasting CD19-redirected chimeric antigen receptor (CAR) T cells in two patients with chronic lymphocytic leukaemia1-4 who achieved a complete remission in 2010. CAR T cells remained detectable more than ten years after infusion, with sustained remission in both patients. Notably, a highly activated CD4+ population emerged in both patients, dominating the CAR T cell population at the later time points. This transition was reflected in the stabilization of the clonal make-up of CAR T cells with a repertoire dominated by a small number of clones. Single-cell profiling demonstrated that these long-persisting CD4+ CAR T cells exhibited cytotoxic characteristics along with ongoing functional activation and proliferation. In addition, longitudinal profiling revealed a population of gamma delta CAR T cells that prominently expanded in one patient concomitant with CD8+ CAR T cells during the initial response phase. Our identification and characterization of these unexpected CAR T cell populations provide novel insight into the CAR T cell characteristics associated with anti-cancer response and long-term remission in leukaemia.


Assuntos
Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Leucemia , Receptores de Antígenos Quiméricos , Antígenos CD19/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Humanos , Leucemia/imunologia , Leucemia/terapia , Receptores de Antígenos Quiméricos/imunologia , Fatores de Tempo
2.
Nature ; 558(7709): 307-312, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849141

RESUMO

Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.


Assuntos
5-Metilcitosina/metabolismo , Antígenos CD19/imunologia , Dioxigenases/genética , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transferência Adotiva , Idoso , Alelos , Diferenciação Celular , Ensaios Clínicos como Assunto , Células Clonais/citologia , Células Clonais/imunologia , Dioxigenases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transgenes
3.
Mol Ther ; 31(8): 2309-2325, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312454

RESUMO

Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.


Assuntos
Mesotelina , Neoplasias , Humanos , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos T
5.
Blood ; 135(7): 505-509, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31703119

RESUMO

Unintentional transduction of B-cell acute lymphoblastic leukemia blasts during CART19 manufacturing can lead to CAR19+ leukemic cells (CARB19) that are resistant to CART19 killing. We developed an anti-CAR19 idiotype chimeric antigen receptor (αCAR19) to specifically recognize CAR19+ cells. αCAR19 CAR T cells efficiently lysed CARB19 cells in vitro and in a primary leukemia-derived xenograft model. We further showed that αCAR19-CART cells could be used as an "antidote" to deplete CART19 cells to reduce long-term side effects, such as B-cell aplasia.


Assuntos
Antígenos CD19/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Camundongos
6.
Semin Cancer Biol ; 65: 91-98, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31866478

RESUMO

Chimeric antigen receptor (CAR)-engineered T cells have demonstrated remarkable success in the treatment of B cell malignancies. FDA approval of these therapies represents a watershed moment in the development of therapies for cancer. Despite the successes of the last decade, many patients will unfortunately not experience durable responses to CAR therapy. Emerging research has shed light on the biology responsible for these failures, and further highlighted the hurdles to broader success. Here, we review the recent research identifying how interactions between cancer cells and engineered immune cells result in resistance to CAR therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia Adotiva/efeitos adversos , Neoplasias/tratamento farmacológico , Receptores de Antígenos Quiméricos/imunologia , Humanos , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/imunologia
7.
Blood ; 134(1): 44-58, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31076448

RESUMO

In chronic lymphocytic leukemia (CLL), acquired T-cell dysfunction impedes development of effective immunotherapeutic strategies, through as-yet unresolved mechanisms. We have previously shown that CD8+ T cells in CLL exhibit impaired activation and reduced glucose uptake after stimulation. CD8+ T cells in CLL patients are chronically exposed to leukemic B cells, which potentially impacts metabolic homeostasis resulting in aberrant metabolic reprogramming upon stimulation. Here, we report that resting CD8+ T cells in CLL have reduced intracellular glucose transporter 1 (GLUT1) reserves, and have an altered mitochondrial metabolic profile as displayed by increased mitochondrial respiration, membrane potential, and levels of reactive oxygen species. This coincided with decreased levels of peroxisome proliferator-activated receptor γ coactivator 1-α, and in line with that, CLL-derived CD8+ T cells showed impaired mitochondrial biogenesis upon stimulation. In search of a therapeutic correlate of these findings, we analyzed mitochondrial biogenesis in CD19-directed chimeric antigen receptor (CAR) CD8+ T cells prior to infusion in CLL patients (who were enrolled in NCT01747486 and NCT01029366 [https://clinicaltrials.gov]). Interestingly, in cases with a subsequent complete response, the infused CD8+ CAR T cells had increased mitochondrial mass compared with nonresponders, which positively correlated with the expansion and persistence of CAR T cells. Our findings demonstrate that GLUT1 reserves and mitochondrial fitness of CD8+ T cells are impaired in CLL. Therefore, boosting mitochondrial biogenesis in CAR T cells might improve the efficacy of CAR T-cell therapy and other emerging cellular immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Pessoa de Meia-Idade , Biogênese de Organelas , Receptores de Antígenos Quiméricos
8.
Mol Ther ; 28(11): 2367-2378, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32730744

RESUMO

B cells infiltrate pancreatic ductal adenocarcinoma (PDAC) and in preclinical cancer models, can suppress T cell immunosurveillance in cancer. Here, we conducted a pilot study to assess the safety and feasibility of administering lentiviral-transduced chimeric antigen receptor (CAR)-modified autologous T cells redirected against mesothelin to target tumor cells along with CART cells redirected against CD19 to deplete B cells. Both CARs contained 4-1BB and CD3ζ signaling domains. Three patients with chemotherapy-refractory PDAC received 1.5 g/m2 cyclophosphamide prior to separate infusions of lentiviral-transduced T cells engineered to express chimeric anti-mesothelin immunoreceptor SS1 (CART-Meso, 3 × 107/m2) and chimeric anti-CD19 immunoreceptor (CART-19, 3 × 107/m2). Treatment was well tolerated without dose-limiting toxicities. Best response was stable disease (1 of 3 patients). CART-19 (compared to CART-Meso) cells showed the greatest expansion in the blood, although persistence was transient. B cells were successfully depleted in all subjects, became undetectable by 7-10 days post-infusion, and remained undetectable for at least 28 days. Together, concomitant delivery of CART-Meso and CART-19 cells in patients with PDAC is safe. CART-19 cells deplete normal B cells but at the dose tested in these 3 subjects did not improve CART-Meso cell persistence.


Assuntos
Antígenos CD19/imunologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Imunoterapia Adotiva , Neoplasias Pancreáticas/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Depleção Linfocítica/métodos , Mesotelina , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Projetos Piloto , Linfócitos T/metabolismo , Resultado do Tratamento
9.
Blood ; 132(10): 1022-1026, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925499

RESUMO

Chimeric antigen receptor (CAR)-modified T cells are being investigated in many settings, including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS cells. We hypothesized that eradicating CD19+ B cells within the TME and the putative circulating CD19+ HRS clonotypic cells using anti-CD19-directed CAR-modified T cells (CART19) may indirectly affect HRS cells, which do not express CD19. Here we describe our pilot trial using CART19 in patients with relapsed or refractory cHL. To limit potential toxicities, we used nonviral RNA CART19 cells, which are expected to express CAR protein for only a few days, as opposed to CART19 generated by viral vector transduction, which expand in vivo and retain CAR expression. All 5 enrolled patients underwent successful manufacturing of nonviral RNA CART19, and 4 were infused with protocol-specified cell dose. There were no severe toxicities. Responses were seen, but these were transient. To our knowledge, this is the first CART19 clinical trial to use nonviral RNA gene delivery. This trial was registered at www.clinicaltrials.gov as #NCT02277522 (adult) and #NCT02624258 (pediatric).


Assuntos
Técnicas de Transferência de Genes , Doença de Hodgkin/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Adulto , Feminino , Doença de Hodgkin/genética , Doença de Hodgkin/imunologia , Humanos , Masculino , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
10.
Mol Ther ; 27(11): 1919-1929, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31420241

RESUMO

This phase I study investigated the safety and activity of lentiviral-transduced chimeric antigen receptor (CAR)-modified autologous T cells redirected against mesothelin (CART-meso) in patients with malignant pleural mesothelioma, ovarian carcinoma, and pancreatic ductal adenocarcinoma. Fifteen patients with chemotherapy-refractory cancer (n = 5 per indication) were treated with a single CART-meso cell infusion. CART-meso cells were engineered by lentiviral transduction with a construct composed of the anti-mesothelin single-chain variable fragment derived from the mouse monoclonal antibody SS1 fused to intracellular signaling domains of 4-1BB and CD3zeta. Patients received 1-3 × 107 or 1-3 × 108 CART-meso cells/m2 with or without 1.5 g/m2 cyclophosphamide. Lentiviral-transduced CART-meso cells were well tolerated; one dose-limiting toxicity (grade 4, sepsis) occurred at 1-3 × 107/m2 CART-meso without cyclophosphamide. The best overall response was stable disease (11/15 patients). CART-meso cells expanded in the blood and reached peak levels by days 6-14 but persisted transiently. Cyclophosphamide pre-treatment enhanced CART-meso expansion but did not improve persistence beyond 28 days. CART-meso DNA was detected in 7/10 tumor biopsies. Human anti-chimeric antibodies (HACA) were detected in the blood of 8/14 patients. CART-meso cells were well tolerated and expanded in the blood of all patients but showed limited clinical activity. Studies evaluating a fully human anti-mesothelin CAR are ongoing.


Assuntos
Proteínas Ligadas por GPI/imunologia , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Idoso , Biomarcadores , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Terapia Genética , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Lentivirus/genética , Masculino , Mesotelina , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Tomografia Computadorizada por Raios X
11.
Gastroenterology ; 155(1): 29-32, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29567081

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is resistant to T-cell-mediated immunotherapy. We engineered T cells to transiently express a messenger RNA encoding a chimeric antigen receptor (CAR) specific for mesothelin, a protein that is overexpressed by PDAC cells. We performed a phase I study to evaluate the safety and efficacy of adoptive cell therapy with autologous mesothelin-specific CAR T cells (CARTmeso cells) in 6 patients with chemotherapy-refractory metastatic PDAC. Patients were given intravenous CARTmeso cells 3 times weekly for 3 weeks. None of the patients developed cytokine release syndrome or neurologic symptoms and there were no dose-limiting toxicities. Disease stabilized in 2 patients, with progression-free survival times of 3.8 and 5.4 months. We used 18F-2-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography/computed tomography imaging to monitor the metabolic active volume (MAV) of individual tumor lesions. The total MAV remained stable in 3 patients and decreased by 69.2% in 1 patient with biopsy-proven mesothelin expression; in this patient, all liver lesions had a complete reduction in FDG uptake at 1 month compared with baseline, although there was no effect on the primary PDAC. Transient CAR expression was detected in patients' blood after infusion and led to expansion of new immunoglobulin G proteins. Our results provide evidence for the potential antitumor activity of messenger RNA CARTmeso cells, as well as PDAC resistance to the immune response.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Ligadas por GPI/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/tratamento farmacológico , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/transplante , Idoso , Carcinoma Ductal Pancreático/secundário , Intervalo Livre de Doença , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Mesotelina , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Taxa de Sobrevida , Linfócitos T/imunologia , Transplante Autólogo
13.
Blood ; 130(21): 2317-2325, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28935694

RESUMO

Tisagenlecleucel (CTL019) is an investigational immunotherapy that involves reprogramming a patient's own T cells with a transgene encoding a chimeric antigen receptor to identify and eliminate CD19-expressing cells. We previously reported that CTL019 achieved impressive clinical efficacy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL), including the expansion and persistence of CTL019 cells, which correlates with response to therapy. Here, we performed formal cellular kinetic analyses of CTL019 in a larger cohort of 103 patients treated with CTL019 in 2 different diseases (ALL and CLL). CTL019 was measured in peripheral blood and bone marrow, using quantitative polymerase chain reaction and flow cytometry. CTL019 levels in peripheral blood typically peaked at 10 to 14 days postinfusion and then declined slowly over time. Patients with complete response (CR)/CR with incomplete count recovery had higher levels of CTL019 in peripheral blood, with greater maximal concentration and area under the curve values compared with nonresponding patients (P < .0001 for each). CTL019 transgene levels were measurable up to 780 days in peripheral blood. CTL019 trafficking and persistence were observed in bone marrow and cerebrospinal fluid. CTL019 expansion correlated with severity of cytokine release syndrome (CRS) and preinfusion tumor burden in pediatric ALL. The results described here are the first detailed formal presentation of cellular kinetics across 2 diseases and highlight the importance of the application of in vivo cellular kinetic analyses to characterize clinical efficacy and CRS severity associated with CTL019 therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Citocinas/sangue , Humanos , Lactente , Cinética , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Recidiva , Transgenes , Carga Tumoral/efeitos dos fármacos , Adulto Jovem
14.
Mol Ther ; 26(1): 269-279, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203150

RESUMO

Replication-competent retrovirus/lentivirus (RCR/L) and insertional oncogenesis are potential safety risks with integrating viruses in gene-modified cell therapies. As such, the Food and Drug Administration guidances outline RCR/L-monitoring methods throughout the entire gene therapy treatment cycle. We present data for 17 vector lots, 375 manufactured T cell products, and 308 patients post-infusion across both HIV and oncology indications, showing no evidence of RCR/L. Given our data, a Poisson probability model estimates that a single patient, or a group of patients, would need to be followed for at least 52.8 years to observe one positive RCR/L event, highlighting the unlikelihood of RCR/L development. Additionally, we estimate the median time for lentivirus-modified T cell products to fall below the 1% vector sequence threshold in peripheral or whole blood that would trigger vector integration site analysis. These estimated times are 1.4 months in hematologic malignancies, 0.66 month in solid tumors, and 0.92 month in HIV. Based on these considerable safety data in HIV and oncology and recent Biologics License Applications filed for lentiviral-modified T cell products for hematologic malignancies, this may be an opportune time to re-evaluate the current guidelines for T cell gene therapy product testing and long-term patient monitoring.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Infecções por HIV/genética , Lentivirus/genética , Neoplasias/genética , Retroviridae/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Clínicos como Assunto , Terapia Genética/métodos , Infecções por HIV/imunologia , Infecções por HIV/terapia , Humanos , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
15.
N Engl J Med ; 373(11): 1040-7, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26352815

RESUMO

A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patient's neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.).


Assuntos
Antígenos CD19/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/uso terapêutico , Adulto , Medula Óssea/imunologia , Medula Óssea/patologia , Feminino , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Indução de Remissão , Transplante Autólogo
16.
Cytotherapy ; 20(5): 623-638, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29653875

RESUMO

Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population.


Assuntos
Imunoterapia , Linfócitos T/imunologia , Animais , Edição de Genes , Humanos , Imunoterapia/economia , Imunoterapia/legislação & jurisprudência , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Transplante Autólogo
17.
Crit Care Med ; 45(2): e124-e131, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27632680

RESUMO

OBJECTIVE: Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. DESIGN: Retrospective cohort study. SETTING: Academic children's hospital. PATIENTS: Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). INTERVENTIONS: All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. MEASUREMENTS AND MAIN RESULTS: Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. CONCLUSIONS: Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and implications for critical care units in cancer centers.


Assuntos
Citocinas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/uso terapêutico , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Adolescente , Anticorpos Monoclonais Humanizados/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Recidiva , Estudos Retrospectivos , Síndrome , Adulto Jovem
19.
Blood ; 136(17): 1980-1983, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32518951
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA