Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur Heart J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078224

RESUMO

BACKGROUND AND AIMS: Patients suffering from Brugada syndrome (BrS) are predisposed to life-threatening cardiac arrhythmias. Diagnosis is challenging due to the elusive electrocardiographic (ECG) signature that often requires unconventional ECG lead placement and drug challenges to be detected. Although NaV1.5 sodium channel dysfunction is a recognized pathophysiological mechanism in BrS, only 25% of patients have detectable SCN5A variants. Given the emerging role of autoimmunity in cardiac ion channel function, this study explores the presence and potential impact of anti-NaV1.5 autoantibodies in BrS patients. METHODS: Using engineered HEK293A cells expressing recombinant NaV1.5 protein, plasma from 50 BrS patients and 50 controls was screened for anti-NaV1.5 autoantibodies via western blot, with specificity confirmed by immunoprecipitation and immunofluorescence. The impact of these autoantibodies on sodium current density and their pathophysiological effects were assessed in cellular models and through plasma injection in wild-type mice. RESULTS: Anti-NaV1.5 autoantibodies were detected in 90% of BrS patients vs. 6% of controls, yielding a diagnostic area under the curve of .92, with 94% specificity and 90% sensitivity. These findings were consistent across varying patient demographics and independent of SCN5A mutation status. Electrophysiological studies demonstrated a significant reduction specifically in sodium current density. Notably, mice injected with BrS plasma showed Brugada-like ECG abnormalities, supporting the pathogenic role of these autoantibodies. CONCLUSIONS: The study demonstrates the presence of anti-NaV1.5 autoantibodies in the majority of BrS patients, suggesting an immunopathogenic component of the syndrome beyond genetic predispositions. These autoantibodies, which could serve as additional diagnostic markers, also prompt reconsideration of the underlying mechanisms of BrS, as evidenced by their role in inducing the ECG signature of the syndrome in wild-type mice. These findings encourage a more comprehensive diagnostic approach and point to new avenues for therapeutic research.

2.
Epilepsia ; 64(12): e222-e228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746765

RESUMO

Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.


Assuntos
Dieta Cetogênica , Epilepsia Generalizada , Humanos , Ratos , Animais , Canais de Potássio/genética , Canais de Potássio/metabolismo , Células HEK293 , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Epilepsia Generalizada/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos
3.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047659

RESUMO

The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.


Assuntos
Síndrome de Brugada , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Miócitos Cardíacos/metabolismo , Síndrome de Brugada/metabolismo , Arritmias Cardíacas/metabolismo , Morte Súbita Cardíaca , Cardiopatias/metabolismo , Potenciais de Ação
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894777

RESUMO

Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas , Mutação
5.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077291

RESUMO

The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.


Assuntos
Canais de Cálcio Tipo T , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Humanos , Mibefradil/farmacologia
6.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361941

RESUMO

Brugada Syndrome (BrS) is an inherited arrhythmogenic disorder with an increased risk of sudden cardiac death. Recent evidence suggests that BrS should be considered as an oligogenic or polygenic condition. Mutations in genes associated with BrS are found in about one-third of patients and they mainly disrupt the cardiac sodium channel NaV1.5, which is considered the main cause of the disease. However, voltage-gated channel's activity could be impacted by post-translational modifications such as sialylation, but their role in BrS remains unknown. Thus, we analyzed high risk BrS patients (n = 42) and healthy controls (n = 42) to assess an involvement of sialylation in BrS. Significant alterations in gene expression and protein sialylation were detected in Peripheral Blood Mononuclear Cells (PBMCs) from BrS patients. These changes were significantly associated with the phenotypic expression of the disease, as the size of the arrhythmogenic substrate and the duration of epicardial electrical abnormalities. Moreover, protein desialylation caused a reduction in the sodium current in an in vitro NaV1.5-overexpressing model. Dysregulation of the sialylation machinery provides definitive evidence that BrS affects extracardiac tissues, suggesting an underlying cause of the disease. Moreover, detection of these changes at the systemic level and their correlation with the clinical phenotype hint at the existence of a biomarker signature for BrS.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Leucócitos Mononucleares/metabolismo , Fenótipo , Mutação , Eletrocardiografia
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946750

RESUMO

Genetic testing in Brugada syndrome (BrS) is still not considered to be useful for clinical management of patients in the majority of cases, due to the current lack of understanding about the effect of specific variants. Additionally, family history of sudden death is generally not considered useful for arrhythmic risk stratification. We sought to demonstrate the usefulness of genetic testing and family history in diagnosis and risk stratification. The family history was collected for a proband who presented with a personal history of aborted cardiac arrest and in whom a novel variant in the SCN5A gene was found. Living family members underwent ajmaline testing, electrophysiological study, and genetic testing to determine genotype-phenotype segregation, if any. Patch-clamp experiments on transfected human embryonic kidney 293 cells enabled the functional characterization of the SCN5A novel variant in vitro. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.5000T>A (p.Val1667Asp) in the SCN5A gene, and demonstrate its segregation with a severe form of BrS and multiple sudden deaths. Functional data revealed a loss of function of the protein affected by the variant. These results provide the first disease association with this variant and demonstrate the usefulness of genetic testing for diagnosis and risk stratification in certain patients. This study also demonstrates the usefulness of collecting the family history, which can assist in understanding the severity of the disease in certain situations and confirm the importance of the functional studies to distinguish between pathogenic mutations and harmless genetic variants.


Assuntos
Síndrome de Brugada/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adolescente , Adulto , Idoso , Ajmalina/farmacologia , Substituição de Aminoácidos , Síndrome de Brugada/complicações , Síndrome de Brugada/metabolismo , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Feminino , Testes Genéticos , Células HEK293 , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Mol Cell Cardiol ; 144: 127-139, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32445844

RESUMO

Ion channel trafficking powerfully influences cardiac electrical activity as it regulates the number of available channels at the plasma membrane. Studies have largely focused on identifying the molecular determinants of the trafficking of the atria-specific KV1.5 channel, the molecular basis of the ultra-rapid delayed rectifier current IKur. Besides, regulated KV1.5 channel recycling upon changes in homeostatic state and mechanical constraints in native cardiomyocytes has been well documented. Here, using cutting-edge imaging in live myocytes, we investigated the dynamics of this channel in the plasma membrane. We demonstrate that the clathrin pathway is a major regulator of the functional expression of KV1.5 channels in atrial myocytes, with the microtubule network as the prominent organizer of KV1.5 transport within the membrane. Both clathrin blockade and microtubule disruption result in channel clusterization with reduced membrane mobility and internalization, whereas disassembly of the actin cytoskeleton does not. Mobile KV1.5 channels are associated with the microtubule plus-end tracking protein EB1 whereas static KV1.5 clusters are associated with stable acetylated microtubules. In human biopsies from patients in atrial fibrillation associated with atrial remodeling, drastic modifications in the trafficking balance occurs together with alteration in microtubule polymerization state resulting in modest reduced endocytosis and increased recycling. Consequently, hallmark of atrial KV1.5 dynamics within the membrane is clathrin- and microtubule- dependent. During atrial remodeling, predominance of anterograde trafficking activity over retrograde trafficking could result in accumulation ok KV1.5 channels in the plasma membrane.


Assuntos
Clatrina/metabolismo , Microtúbulos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Multimerização Proteica , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/genética , Clatrina/química , Vesículas Revestidas por Clatrina , Citoesqueleto/química , Citoesqueleto/metabolismo , Fenômenos Eletrofisiológicos , Átrios do Coração/metabolismo , Humanos , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Microtúbulos/química , Microtúbulos/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Ratos , Sarcolema/metabolismo , Transdução de Sinais
9.
Biophys J ; 117(12): 2455-2470, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31451180

RESUMO

Ion channel behavior can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating, and recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this article, we assess the validity of these representations by characterizing channel kinetics at multiple temperatures. We focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in drug safety assessment and commonly screened at room temperature so that results require extrapolation to physiological temperature. In Part I of this study, we established a reliable method for high-throughput characterization of hERG1a (Kv11.1) kinetics, using a 15-second information-rich optimized protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using Chinese hamster ovary cells overexpressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, with temperature control. We characterize the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37°C and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients; it broadly follows a generalized, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol dependent. Our results show that a direct fit using our 15-s protocol best represents hERG kinetics at any given temperature and suggests that using the Generalized Eyring theory is preferable if no experimental data are available to derive model parameters at a given temperature.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Modelos Biológicos , Temperatura , Animais , Células CHO , Cricetulus , Humanos , Cinética
10.
J Mol Cell Cardiol ; 86: 42-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159617

RESUMO

The class Ic antiarrhythmic drug flecainide inhibits KCNH2-encoded "hERG" potassium channels at clinically relevant concentrations. The aim of this study was to elucidate the underlying molecular basis of this action. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Wild-type (WT) IhERG was inhibited with an IC50 of 1.49µM and this was not significantly altered by reversing the direction of K(+) flux or raising external [K(+)]. The use of charged and uncharged flecainide analogues showed that the charged form of the drug accesses the channel from the cell interior to produce block. Promotion of WT IhERG inactivation slowed recovery from inhibition, whilst the N588K and S631A attenuated-inactivation mutants exhibited IC50 values 4-5 fold that of WT IhERG. The use of pore-helix/selectivity filter (T623A, S624A V625A) and S6 helix (G648A, Y652A, F656A) mutations showed <10-fold shifts in IC50 for all but V625A and F656A, which respectively exhibited IC50s 27-fold and 142-fold their WT controls. Docking simulations using a MthK-based homology model suggested an allosteric effect of V625A, since in low energy conformations flecainide lay too low in the pore to interact directly with that residue. On the other hand, the molecule could readily form π-π stacking interactions with aromatic residues and particularly with F656. We conclude that flecainide accesses the hERG channel from the cell interior on channel gating, binding low in the inner cavity, with the S6 F656 residue acting as a principal binding determinant.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Flecainida/administração & dosagem , Torsades de Pointes/tratamento farmacológico , Transativadores/genética , Antiarrítmicos/administração & dosagem , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Mutação , Técnicas de Patch-Clamp , Conformação Proteica , Torsades de Pointes/genética , Torsades de Pointes/patologia , Transativadores/biossíntese , Transativadores/química , Regulador Transcricional ERG
12.
Sci Rep ; 12(1): 18984, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347939

RESUMO

Timothy syndrome (TS) is a rare pleiotropic disorder associated with long QT syndrome, syndactyly, dysmorphic features, and neurological symptoms. Several variants in exon 8 or 8a of CACNA1C, a gene encoding the α-subunit of voltage-gated Ca2+ channels (Cav1.2), are known to cause classical TS. We identified a p.R412M (exon 9) variant in an atypical TS case. The aim of this study was to examine the functional effects of CACNA1C p.R412M on CaV1.2 in comparison with those of p.G406R. The index patient was a 2-month-old female infant who suffered from a cardio-pulmonary arrest in association with prolonged QT intervals. She showed dysmorphic facial features and developmental delay, but not syndactyly. Interestingly, she also presented recurrent seizures from 4 months. Genetic tests identified a novel heterozygous CACNA1C variant, p.R412M. Using heterologous expression system with HEK-293 cells, analyses with whole-cell patch-clamp technique revealed that p.R412M caused late Ca2+ currents by significantly delaying CaV1.2 channel inactivation, consistent with the underlying mechanisms of classical TS. A novel CACNA1C variant, p.R412M, was found to be associated with atypical TS through the same mechanism as p.G406R, the variant responsible for classical TS.


Assuntos
Síndrome do QT Longo , Sindactilia , Feminino , Humanos , Lactente , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células HEK293 , Mutação , Sindactilia/genética
14.
Heart Rhythm ; 17(5 Pt A): 786-794, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904424

RESUMO

BACKGROUND: Membrane-associated guanylate kinase proteins function as adaptor proteins to mediate the recruitment and scaffolding of ion channels in the plasma membrane in various cell types. In the heart, the protein calcium/calmodulin-dependent serine protein kinase (CASK) negatively regulates the main cardiac sodium channel NaV1.5, which carries the sodium current (INa) by preventing its anterograde trafficking. CASK is also a new member of the dystrophin-glycoprotein complex and, like syntrophin, binds to the C-terminal domain of the channel. OBJECTIVE: The purpose of this study was to unravel the mechanisms of CASK-mediated negative INa regulation and interaction with the dystrophin-glycoprotein complex in cardiac myocytes. METHODS: CASK adenoviral truncated constructs with sequential single functional domain deletions were designed for overexpression in cardiac myocytes: CASKΔCAMKII, CASKΔL27A, CASKΔL27B, CASKΔPDZ, CASKΔSH3, CASKΔHOOK, and CASKΔGUK. A combination of whole-cell patch-clamp recording, total internal reflection fluorescence microscopy, and biochemistry experiments was conducted in cardiac myocytes to study the functional consequences of domain deletions. RESULTS: We show that both L27B and GUK domains are required for the negative regulatory effect of CASK on INa and NaV1.5 surface expression and that the HOOK domain is essential for interaction with the cell adhesion dystrophin-glycoprotein complex. CONCLUSION: This study demonstrates that the multimodular structure of CASK confers an ability to simultaneously interact with several targets within cardiomyocytes. Through its L27B, GUK, and HOOK domains, CASK potentially provides the ability to control channel delivery at adhesion points in cardiomyocytes.


Assuntos
Cálcio , Calmodulina , Cálcio/metabolismo , Calmodulina/metabolismo , Adesão Celular , Distrofina/metabolismo , Adesões Focais/metabolismo , Glicoproteínas/metabolismo , Guanilato Quinases/química , Guanilato Quinases/metabolismo , Proteínas Quinases/metabolismo , Serina , Canais de Sódio/metabolismo
15.
Front Cell Dev Biol ; 8: 761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903469

RESUMO

BACKGROUND: Long QT syndrome type 3 (LQT3) is caused by gain-of-function mutations in the SCN5A gene, which encodes the α subunit of the cardiac voltage-gated sodium channel. LQT3 patients present bradycardia and lethal arrhythmias during rest or sleep. Further, the efficacy of ß-blockers, the drug used for their treatment, is uncertain. Recently, a large multicenter LQT3 cohort study demonstrated that ß-blocker therapy reduced the risk of life-threatening cardiac events in female patients; however, the detailed mechanism of action remains unclear. OBJECTIVES: This study aimed to establish LQT3-human induced pluripotent stem cells (hiPSCs) and to investigate the effect of propranolol in this model. METHOD: An hiPSCs cell line was established from peripheral blood mononuclear cells of a boy with LQT3 carrying the SCN5A-N1774D mutation. He had suffered from repetitive torsades de pointes (TdPs) with QT prolongation since birth (QTc 680 ms), which were effectively treated with propranolol, as it suppressed lethal arrhythmias. Furthermore, hiPSCs were differentiated into cardiomyocytes (CMs), on which electrophysiological functional assays were performed using the patch-clamp method. RESULTS: N1774D-hiPSC-CMs exhibited significantly prolonged action potential durations (APDs) in comparison to those of the control cells (N1774D: 440 ± 37 ms vs. control: 272 ± 22 ms; at 1 Hz pacing; p < 0.01). Furthermore, N1774D-hiPSC-CMs presented gain-of-function features: a hyperpolarized shift of steady-state activation and increased late sodium current compared to those of the control cells. 5 µM propranolol shortened APDs and inhibited late sodium current in N1774D-hiPSC-CMs, but did not significantly affect in the control cells. In addition, even in the presence of intrapipette guanosine diphosphate ßs (GDPßs), an inhibitor of G proteins, propranolol reduced late sodium current in N1774D cells. Therefore, these results suggested a unique inhibitory effect of propranolol on late sodium current unrelated to ß-adrenergic receptor block in N1774D-hiPSC-CMs. CONCLUSION: We successfully recapitulated the clinical phenotype of LQT3 using patient-derived hiPSC-CMs and determined that the mechanism, by which propranolol inhibited the late sodium current, was independent of ß-adrenergic receptor signaling pathway.

16.
J Am Heart Assoc ; 4(4)2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25911606

RESUMO

BACKGROUND: Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN-channels. This study investigated the propensity of ivabradine to interact with KCNH2-encoded human Ether-à-go-go-Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. METHODS AND RESULTS: Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Ih ERG was inhibited with an IC50 of 2.07 µmol/L for the hERG 1a isoform and 3.31 µmol/L for coexpressed hERG 1a/1b. The voltage and time-dependent characteristics of Ih ERG block were consistent with preferential gated-state-dependent channel block. Inhibition was partially attenuated by the N588K inactivation-mutant and the S624A pore-helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK-based homology model of hERG, the 2 aromatic rings of the drug could form multiple π-π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea-pig Langendorff-perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. CONCLUSIONS: Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits Ih ERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design.


Assuntos
Benzazepinas/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Bradicardia/tratamento farmacológico , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Cobaias , Células HEK293 , Coração/efeitos dos fármacos , Humanos , Ivabradina , Masculino , Técnicas de Patch-Clamp
17.
Physiol Rep ; 2(10)2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25318749

RESUMO

Potassium channels encoded by human ether-à-go-go-related gene (hERG) mediate the cardiac rapid delayed rectifier K(+) current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external potassium concentration ([K(+)]e), but effects of acute [K(+)]e changes on the response of IhERG to premature stimulation have not been characterized. Whole-cell patch-clamp measurements of hERG current were made at 37°C from hERG channels expressed in HEK293 cells. Under conventional voltage-clamp, both wild-type (WT) and S624A pore-mutant IhERG during depolarization to +20 mV and subsequent repolarization to -40 mV were decreased when superfusate [K(+)]e was decreased from 4 to 1 mmol/L. When [K(+)]e was increased from 4 to 10 mmol/L, pulse current was increased and tail IhERG was decreased. Increasing [K(+)]e produced a +10 mV shift in voltage-dependent inactivation of WT IhERG and slowed inactivation time course, while lowering [K(+)]e from 4 to 1 mmol/L produced little change in inactivation voltage dependence, but accelerated inactivation time course. Under action potential (AP) voltage-clamp, lowering [K(+)]e reduced the amplitude of IhERG during the AP and suppressed the maximal IhERG response to premature stimuli. Raising [K(+)]e increased IhERG early during the AP and augmented the IhERG response to premature stimuli. Our results are suggestive that during hypokalemia not only is the contribution of IKr to ventricular repolarization reduced but its ability to protect against unwanted premature stimuli also becomes impaired.

18.
PLoS One ; 7(12): e52451, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300672

RESUMO

BACKGROUND: The familial Short QT Syndrome (SQTS) is associated with an increased risk of cardiac arrhythmia and sudden death. Gain-of-function mutations in the hERG K(+) channel protein have been linked to variant 1 of the SQTS. A hERG channel pore (T618I) mutation has recently been identified in families with heritable SQTS. This study aimed to determine effects of the T618I-hERG mutation on (i) hERG current (I(hERG)) elicited by ventricular action potentials; (ii) the sensitivity of I(hERG) to inhibition by four clinically used antiarrhythmic drugs. METHODS: Electrophysiological recordings of I(hERG) were made at 37°C from HEK 293 cells expressing wild-type (WT) or T618I hERG. Whole-cell patch clamp recording was performed using both conventional voltage clamp and ventricular action potential (AP) clamp methods. RESULTS: Under conventional voltage-clamp, WT I(hERG) peaked at 0-+10 mV, whilst for T618I I(hERG) maximal current was right-ward shifted to ∼ +40 mV. Voltage-dependent activation and inactivation of T618I I(hERG) were positively shifted (respectively by +15 and ∼ +25 mV) compared to WT I(hERG). The I(hERG) 'window' was increased for T618I compared to WT hERG. Under ventricular AP clamp, maximal repolarising WT I(hERG) occurred at ∼ -30 mV, whilst for T618I hERG peak I(hERG) occurred earlier during AP repolarisation, at ∼ +5 mV. Under conventional voltage clamp, half-maximal inhibitory concentrations (IC(50)) for inhibition of I(hERG) tails by quinidine, disopyramide, D-sotalol and flecainide for T618I hERG ranged between 1.4 and 3.2 fold that for WT hERG. Under action potential voltage clamp, T618I IC(50)s ranged from 1.2 to 2.0 fold the corresponding IC(50) values for WT hERG. CONCLUSIONS: The T618I mutation produces a more modest effect on repolarising I(hERG) than reported previously for the N588K-hERG variant 1 SQTS mutation. All drugs studied here appear substantially to retain their ability to inhibit I(hERG) in the setting of the SQTS-linked T618I mutation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Antiarrítmicos/farmacologia , Arritmias Cardíacas/genética , Canais de Potássio Éter-A-Go-Go/genética , Cardiopatias Congênitas/genética , Mutação , Quinidina/farmacologia , Canal de Potássio ERG1 , Condutividade Elétrica , Células HEK293 , Sistema de Condução Cardíaco/anormalidades , Ventrículos do Coração/citologia , Humanos , Mutagênese , Técnicas de Patch-Clamp , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA