Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 648-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409601

RESUMO

Understanding the structural and dynamic properties of disordered systems at the mesoscale is crucial. This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which undergo significant and complex structural changes when operated in an electrolyte. In this study, we investigate the mesoscale strain, reversibility and dynamics of a model OMIEC material under external electrochemical potential using operando X-ray photon correlation spectroscopy. Our results reveal that strain and structural hysteresis depend on the sample's cycling history, establishing a comprehensive kinetic sequence bridging the macroscopic and microscopic behaviours of OMIECs. Furthermore, we uncover the equilibrium and non-equilibrium dynamics of charge carriers and material-doping states, highlighting the unexpected coupling between charge carrier dynamics and mesoscale order. These findings advance our understanding of the structure-dynamics-function relationships in OMIECs, opening pathways for designing and engineering materials with improved performance and functionality in non-equilibrium states during device operation.

2.
J Am Chem Soc ; 144(10): 4642-4656, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257589

RESUMO

A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a µC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 µW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.

3.
Small ; 18(21): e2200311, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35491522

RESUMO

Peripheral nerve mapping tools with higher spatial resolution are needed to advance systems neuroscience, and potentially provide a closed-loop biomarker in neuromodulation applications. Two critical challenges of microscale neural interfaces are 1) how to apply them to small peripheral nerves, and 2) how to minimize chronic reactivity. A flexible microneedle nerve array (MINA) is developed, which is the first high-density penetrating electrode array made with axon-sized silicon microneedles embedded in low-modulus thin silicone. The design, fabrication, acute recording, and chronic reactivity to an implanted MINA, are presented. Distinctive units are identified in the rat peroneal nerve. The authors also demonstrate a long-term, cuff-free, and suture-free fixation manner using rose bengal as a light-activated adhesive for two time-points. The tissue response is investigated at 1-week and 6-week time-points, including two sham groups and two MINA-implanted groups. These conditions are quantified in the left vagus nerve of rats using histomorphometry. Micro computed tomography (micro-CT) is added to visualize and quantify tissue encapsulation around the implant. MINA demonstrates a reduction in encapsulation thickness over previously quantified interfascicular methods. Future challenges include techniques for precise insertion of the microneedle electrodes and demonstrating long-term recording.


Assuntos
Axônios , Nervo Isquiático , Animais , Estimulação Elétrica , Eletrodos Implantados , Ratos , Nervo Isquiático/fisiologia , Microtomografia por Raio-X
4.
Angew Chem Int Ed Engl ; 61(7): e202113078, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797584

RESUMO

Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 µWm-1  K-2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.

5.
Nat Mater ; 22(9): 1055-1056, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644224
6.
Nanoscale ; 15(14): 6793-6801, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946985

RESUMO

The introduction of oligoether side chains onto a polymer backbone can help to stabilise polymeric dispersions in water without the necessity of surfactants or additives when conjugated polymer nanoparticles are prepared. A series of poly(3-hexylthiophene) (P3HT) derivatives with different content of a polar thiophene derivative 3-((2-methoxyethoxy)methyl)thiophene was interrogated to find the effect of the polar chains on the stability of the formed nanoparticles, as well as their structural, optical, electrochemical, and electrical properties. Findings indicated that incorporation of 10-20 percent of the polar side chain led to particles that are stable over a period of 42 days, with constant particle size and polydispersity, however the particles from the polymer with 30 percent polar side chain showed aggregation effects. The polymer dispersions showed a stronger solid-like behaviour in water with decreasing polar side chain content, while thin film deposition from water was found to afford globular morphologies and crystallites with more isotropic orientation compared to conventional solution-processed films. As a proof-of-principle, field-effect transistors were fabricated directly from the aqueous dispersions demonstrating that polymers with hydrophilic moieties can be processed in water without the requirement of surfactants.

7.
Adv Mater ; 34(14): e2107829, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35075720

RESUMO

Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine-tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure-property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular-design strategies for isoindigo-based mixed conductors that can support efficient p-type, n-type, and ambipolar transistor operation in an aqueous environment.

8.
Polym Chem ; 13(19): 2764-2775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189107

RESUMO

The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition-fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow (D = 1.1) and broad (D = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS (M n = 145 kg mol-1) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [µC * ] values (~140 F·cm-1V-1s-1) in PEDOT:PSS, despite having a lower volumetric capacitance (C * = 35 ± 4 F cm-3). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility (µ OECT ~ 4 cm2V-1s-1) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces.

9.
Nat Commun ; 13(1): 7964, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575179

RESUMO

Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer's molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA