Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Evol Biol ; 19(1): 24, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651060

RESUMO

BACKGROUND: Knowledge about the distribution of the genetic variation of marine species is fundamental to address species conservation and management strategies, especially in scenarios with mass mortalities. In the Mediterranean Sea, Petrosia ficiformis is one of the species most affected by temperature-related diseases. Our study aimed to assess its genetic structure, connectivity, and bottleneck signatures to understand its evolutionary history and to provide information to help design conservation strategies of sessile marine invertebrates. RESULTS: We genotyped 280 individuals from 19 locations across the entire distribution range of P. ficiformis in the Atlanto-Mediterranean region at 10 microsatellite loci. High levels of inbreeding were detected in most locations (especially in the Macaronesia and the Western Mediterranean) and bottleneck signatures were only detected in Mediterranean populations, although not coinciding entirely with those with reported die-offs. We detected strong significant population differentiation, with the Atlantic populations being the most genetically isolated, and show that six clusters explained the genetic structure along the distribution range of this sponge. Although we detected a pattern of isolation by distance in P. ficiformis when all locations were analyzed together, stratified Mantel tests revealed that other factors could be playing a more prominent role than isolation by distance. Indeed, we detected a strong effect of oceanographic barriers impeding the gene flow among certain areas, the strongest one being the Almeria-Oran front, hampering gene flow between the Atlantic Ocean and the Mediterranean Sea. Finally, migration and genetic diversity distribution analyses suggest a Mediterranean origin for the species. CONCLUSIONS: In our study Petrosia ficiformis showed extreme levels of inbreeding and population differentiation, which could all be linked to the poor swimming abilities of the larva. However, the observed moderate migration patterns are highly difficult to reconcile with such poor larval dispersal, and suggest that, although unlikely, dispersal may also be achieved in the gamete phase. Overall, because of the high genetic diversity in the Eastern Mediterranean and frequent mass mortalities in the Western Mediterranean, we suggest that conservation efforts should be carried out specifically in those areas of the Mediterranean to safeguard the genetic diversity of the species.


Assuntos
Fluxo Gênico , Variação Genética , Petrosia/genética , Migração Animal/fisiologia , Animais , Organismos Aquáticos/genética , Oceano Atlântico , Genética Populacional , Genótipo , Geografia , Mar Mediterrâneo , Densidade Demográfica
2.
Zootaxa ; 4208(4): zootaxa.4208.4.3, 2016 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-28006812

RESUMO

We used both morphological and genetic approaches to investigate and to describe a new Mediterranean sponge species of the genus Protosuberites from the estuarine-anchialine Bue Marino Cave of Sardinia (Tyrrhenian Sea). The morphotraits of the specimens were compared versus congeneric species with the strongest affinities, covering the genus geographic range worldwide. Protosuberites mereui sp. nov. is light yellow, thinly encrusting, devoid of any special ectosomal skeleton, with spicular complement of tylostyles of three size classes, single or arranged in bundles/tufts, with round to suboval heads. The new species is characterized by an exclusive diagnostic trait recorded for any cave-dwelling Protosuberites i.e. suboval and basally plated resting bodies with a foraminal aperture ornate by a collar. Resting bodies were found in the basal spongin plate firmly adhering to the substratum singly or in small groups. Also the rare, small tylostyles with a sinuous shaft and a typical mushroom-like head were never recorded in the Western Mediterranean and Atlantic species of the genus. The phylogenetic reconstruction using maximum likelihood (ML) and Bayesian Inference (BI) analyses (COI, 18S rRNA, and 28S rRNA) recovered a robustly supported sister relationship between the Mediterranean P. mereui sp. nov. and Protosuberites sp. 'Panama' from the Eastern Pacific Ocean. The genetic distances based on COI sequences between all compared Protosuberites species were always higher than 2%, a value sufficient to confirm that P. mereui sp. nov. is a distinct species within the genus. Morphological and genetic analyses confirm unanimously P. mereui sp. nov. as a new species. Our results contribute to the assessment of biodiversity in anchialine/estuarine caves and increase data on sponge adaptive strategies in these extreme ecosystems.


Assuntos
Poríferos/classificação , Poríferos/genética , Animais , Cavernas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Itália , Microscopia Eletrônica de Varredura , Filogenia , Poríferos/anatomia & histologia , Poríferos/ultraestrutura , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Águas Salinas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA