Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 574(7776): 63-68, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554967

RESUMO

The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.


Assuntos
Receptor gp130 de Citocina/metabolismo , Citocinas/síntese química , Citocinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ligação Competitiva , Citocinas/química , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Fígado Gorduroso/prevenção & controle , Teste de Tolerância a Glucose , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Incretinas/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Pâncreas/metabolismo , Fosfoproteínas/metabolismo , Engenharia de Proteínas , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Fatores de Transcrição , Aumento de Peso/efeitos dos fármacos , Proteínas de Sinalização YAP
2.
J Lipid Res ; 61(1): 105-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732502

RESUMO

Quantitative MS of human plasma lipids is a promising technology for translation into clinical applications. Current MS-based lipidomic methods rely on either direct infusion (DI) or chromatographic lipid separation methods (including reversed phase and hydrophilic interaction LC). However, the use of lipid markers in laboratory medicine is limited by the lack of reference values, largely because of considerable differences in the concentrations measured by different laboratories worldwide. These inconsistencies can be explained by the use of different sample preparation protocols, method-specific calibration procedures, and other experimental and data-reporting parameters, even when using identical starting materials. Here, we systematically investigated the roles of some of these variables in multiple approaches to lipid analysis of plasma samples from healthy adults by considering: 1) different sample introduction methods (separation vs. DI methods); 2) different MS instruments; and 3) between-laboratory differences in comparable analytical platforms. Each of these experimental variables resulted in different quantitative results, even with the inclusion of isotope-labeled internal standards for individual lipid classes. We demonstrated that appropriate normalization to commonly available reference samples (i.e., "shared references") can largely correct for these systematic method-specific quantitative biases. Thus, to harmonize data in the field of lipidomics, in-house long-term references should be complemented by a commonly available shared reference sample, such as NIST SRM 1950, in the case of human plasma.


Assuntos
Lipidômica/normas , Lipídeos/sangue , Espectrometria de Massas , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Padrões de Referência , Adulto Jovem
3.
J Biol Chem ; 294(4): 1218-1229, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30518550

RESUMO

Autophagy is critical for maintaining cellular function via clearance of excess nutrients and damaged organelles. In pancreatic ß-cells, it helps counter the endoplasmic reticulum (ER) stress that impairs insulin secretory capacity during Type 2 diabetes. Chronic exposure of ß-cells to saturated fatty acids (FAs) such as palmitate stimulates ER stress and modulates autophagy, but the effects of unsaturated FAs such as oleate, which are also elevated during obesity, are less well understood. We therefore treated MIN6 cells and mouse islets for 8-48 h with either palmitate or oleate, and then monitored autophagic flux, signaling pathways, lysosomal biology, and phospholipid profiles. Compared with palmitate, oleate more effectively stimulated both autophagic flux and clearance of autophagosomes. The flux stimulation occurred independently of ER stress, nutrient-sensing (mTOR) and signaling pathways (protein kinases A, C, and D). Instead the mechanism involved the exchange factor directly activated by cAMP 2 (EPAC2). Oleate reduced cellular cAMP, and its effects on autophagic flux were reproduced or inhibited, respectively, by Epac2 knockdown or activation. Oleate also increased lysosomal acidity and increased phospholipid saturation, consistent with improved autophagosomal fusion with lysosomes. We conclude that a potent stimulation of autophagy might help explain the known benefits of unsaturated FAs in countering the toxicity of saturated FAs in ß-cells during obesity and lipid loading.


Assuntos
Apoptose/efeitos dos fármacos , AMP Cíclico/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Oleico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
4.
Diabetes Metab ; 49(2): 101409, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36400409

RESUMO

AIM: Subjects with Familial Partial Lipodystrophy type 2 (FPLD2) are at high risk to develop diabetes. To better understand the natural history and variability of this disease, we studied glucose tolerance, insulin response to an oral glucose load, and metabolic markers in the largest cohort to date of subjects with FPLD2 due to the same LMNA variant. METHODS: A total of 102 patients aged > 18 years, with FPLD2 due to the LMNA 'Reunionese' variant p.(Thr655Asnfs*49) and 22 unaffected adult relatives with normal glucose tolerance (NGT) were enrolled. Oral Glucose Tolerance Tests (OGTT) with calculation of derived insulin sensitivity and secretion markers, and measurements of HbA1c, C-reactive protein, leptin, adiponectin and lipid profile were performed. RESULTS: In patients with FPLD2: 65% had either diabetes (41%) or prediabetes (24%) despite their young age (median: 39.5 years IQR 29.0-50.8) and close-to-normal BMI (median: 25.5 kg/m2 IQR 23.1-29.4). Post-load OGTT values revealed insulin resistance and increased insulin secretion in patients with FPLD2 and NGT, whereas patients with diabetes were characterized by decreased insulin secretion. Impaired glucose tolerance with normal fasting glucose was present in 86% of patients with prediabetes. Adiponectin levels were decreased in all subjects with FPLD2 and correlated with insulin sensitivity markers. CONCLUSIONS: OGTT reveals early alterations of glucose and insulin metabolism in patients with FPLD2, and should be systematically performed before excluding a diagnosis of prediabetes or diabetes to adapt medical care. Decreased adiponectin is an early marker of the disease. Adiponectin replacement therapy warrants further study in FPLD2.


Assuntos
Diabetes Mellitus Lipoatrófica , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lipodistrofia Parcial Familiar , Estado Pré-Diabético , Adulto , Humanos , Adiponectina , Insulina , Glucose , Glicemia/metabolismo
5.
Mol Metab ; 40: 101023, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504884

RESUMO

OBJECTIVE: Investigations of autophagy in ß-cells have usually focused on its homeostatic function. More dynamic roles in inhibiting glucose-stimulated insulin secretion (GSIS), potentially involving remodelling of cellular lipids, have been suggested from in vitro studies but not evaluated in vivo. METHODS: We employed temporally-regulated deletion of the essential autophagy gene, Atg7, in ß-cells. Mice were fed chow or high-fat diets (HFD), in conjunction with deletion of Atg7 for the last 3 weeks (short-term model) or 9 weeks (long-term model). Standard in vivo metabolic phenotyping was undertaken, and 450 lipid species in islets quantified ex vivo using mass spectroscopy (MS). MIN6 cells were also employed for lipidomics and secretory interventions. RESULTS: ß-cell function was impaired by inhibiting autophagy in the longer-term, but conversely improved by 3-week deletion of Atg7, specifically under HFD conditions. This was accompanied by augmented GSIS ex vivo. Surprisingly, the HFD had minimal effect on sphingolipid and neutral lipid species, but modulated >100 phospholipids and ether lipids, and markedly shifted the profile of polyunsaturated fatty acid (PUFA) sidechains from n3 to n6 forms. These changes were partially countered by Atg7 deletion, consistent with an accompanying upregulation of the PUFA elongase enzyme, Elovl5. Loss of Atg7 separately augmented plasmalogens and alkyl lipids, in association with increased expression of Lonp2, a peroxisomal chaperone/protease that facilitates maturation of ether lipid synthetic enzymes. Depletion of PUFAs and ether lipids was also observed in MIN6 cells chronically exposed to oleate (more so than palmitate). GSIS was inhibited by knocking down Dhrs7b, which encodes an enzyme of peroxisomal ether lipid synthesis. Conversely, impaired GSIS due to oleate pre-treatment was selectively reverted by Dhrs7b overexpression. CONCLUSIONS: A detrimental increase in n6:n3 PUFA ratios in ether lipids and phospholipids is revealed as a major response of ß-cells to high-fat feeding. This is partially reversed by short-term inhibition of autophagy, which results in compensatory changes in peroxisomal lipid metabolism. The short-term phenotype is linked to improved GSIS, in contrast to the impairment seen with the longer-term inhibition of autophagy. The balance between these positive and negative inputs could help determine whether ß-cells adapt or fail in response to obesity.


Assuntos
Autofagia/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Linhagem Celular , Dieta Hiperlipídica , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Peroxissomos/fisiologia
6.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016362

RESUMO

CONTEXT: Insulin resistance (IR) remains a global health challenge. Lipidomics offers an opportunity to identify biomarkers and better understand mechanisms of IR associated with abnormal lipid metabolism. OBJECTIVE: The objective of this article is to determine plasma lipid species associated with indices of IR and evaluate the lipidome response to an oral glucose tolerance test (OGTT). DESIGN AND SETTING: This study was community based and cross-sectional. PARTICIPANTS AND SAMPLE: Plasma samples (collected at 0 and 120 min during an OGTT) from nonobese, young adults age 18 to 34 years (n = 246) were analyzed using liquid chromatography-tandem mass spectrometry. MAIN OUTCOME MEASURES: The associations between indices of IR and lipid classes and species (with a sex interaction term), or changes in lipid levels during an OGTT, were tested using linear models (adjusted for age, sex, body mass index, total cholesterol, high-density lipoprotein cholesterol, and triglycerides). RESULTS: Some (213) and (199) lipid species were associated with the homeostatic model assessment of insulin resistance and insulin area under curve (AUC), respectively. Alkylphosphatidylcholine (10), alkenylphosphatidylcholine (23), and alkylphosphatidylethanolamine (6) species were associated with insulin AUC in men only. Species of phosphatidylcholine (7) and sphingomyelin (5) were associated in women only. In response to an OGTT, a perturbation in the plasma lipidome, particularly in acylcarnitine species, was observed; and the changes in many lipid species were associated with insulin AUC. CONCLUSIONS: The plasma lipidome and changes in lipid levels during an OGTT were associated with indices of IR. These findings underlie the involvement of molecular lipid species in the pathogenesis of IR and possibly crosstalk between IR and sex-specific regulation of lipid metabolism.


Assuntos
Biomarcadores/sangue , Intolerância à Glucose/epidemiologia , Teste de Tolerância a Glucose/métodos , Resistência à Insulina , Lipidômica/métodos , Lipídeos/sangue , Obesidade/fisiopatologia , Adolescente , Adulto , Austrália/epidemiologia , Estudos de Coortes , Estudos Transversais , Feminino , Seguimentos , Intolerância à Glucose/sangue , Humanos , Masculino , Prognóstico , Adulto Jovem
7.
Cell Metab ; 24(6): 820-834, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27818258

RESUMO

Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Ceramidas/farmacologia , Inflamação/patologia , Gordura Subcutânea/patologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Adulto , Idoso , Animais , Índice de Massa Corporal , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Temperatura Baixa , Diabetes Mellitus/metabolismo , Dioxóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Inflamação/genética , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos/efeitos dos fármacos , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/biossíntese , Esfingolipídeos/metabolismo , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Adulto Jovem
8.
Nat Commun ; 5: 5705, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25489988

RESUMO

Heart failure (HF) and atrial fibrillation (AF) share common risk factors, frequently coexist and are associated with high mortality. Treatment of HF with AF represents a major unmet need. Here we show that a small molecule, BGP-15, improves cardiac function and reduces arrhythmic episodes in two independent mouse models, which progressively develop HF and AF. In these models, BGP-15 treatment is associated with increased phosphorylation of the insulin-like growth factor 1 receptor (IGF1R), which is depressed in atrial tissue samples from patients with AF. Cardiac-specific IGF1R transgenic overexpression in mice with HF and AF recapitulates the protection observed with BGP-15. We further demonstrate that BGP-15 and IGF1R can provide protection independent of phosphoinositide 3-kinase-Akt and heat-shock protein 70; signalling mediators often defective in the aged and diseased heart. As BGP-15 is safe and well tolerated in humans, this study uncovers a potential therapeutic approach for HF and AF.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Oximas/química , Piperidinas/química , Animais , Caveolina 1/metabolismo , Caveolina 3/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Gangliosídeo G(M3)/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise em Microsséries , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores de Somatomedina/metabolismo , Fatores de Risco , Transdução de Sinais , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA