Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(10): e2307458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145355

RESUMO

Low-dimensional semiconductor nanostructures, particularly in the form of nanowire configurations with large surface-to-volume-ratio, offer intriguing optoelectronic properties for the advancement of integrated photonic technologies. Here, a bias-controlled, superior dual-functional broadband light detecting/emitting diode enabled by constructing the aluminum-gallium-nitride-based nanowire on the silicon-platform is reported. Strikingly, the diode exhibits a stable and high responsivity (R) of over 200 mAW-1 covering an extremely wide operation band under reverse bias conditions, ranging from deep ultraviolet (DUV: 254 nm) to near-infrared (NIR: 1000 nm) spectrum region. While at zero bias, it still possesses superior DUV light selectivity with a high off-rejection ratio of 106. When it comes to the operation of the light-emitting mode under forward bias, it can achieve large spectral changes from UV to red simply by coating colloid quantum dots on the nanowires. Based on the multifunctional features of the diodes, this study further employs them in various optoelectronic systems, demonstrating outstanding applications in multicolor imaging, filterless color discrimination, and DUV/NIR visualization. Such highly responsive broadband photodetector with a tunable emitter enabled by III-V nanowire on silicon provides a new avenue toward the realization of integrated photonics and holds great promise for future applications in communication, sensing, imaging, and visualization.

2.
Opt Lett ; 46(19): 4809-4812, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598205

RESUMO

In this Letter, we perform a comprehensive investigation on the optical characterization of micro-sized deep-ultraviolet (DUV) LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the design of chip sidewall angle. We found that the micro-LEDs with a smaller inclined chip sidewall angle (∼33∘) have improved external quantum efficiency (EQE) performance 19% more than that of the micro-LEDs with a larger angle (∼75∘). Most importantly, the EQE improvement by adopting an inclined sidewall can be more outstanding as the diameter of the LED chip reduces from 40 to 20 µm. The enhanced EQE of the micro-LEDs with smaller inclined chip sidewall angles can be attributed to the stronger reflection of the inclined sidewall, leading to enhanced light extraction efficiency (LEE). In the end, the numerical optical modeling further reveals and verifies the impact of the sidewall angles on the LEE of the micro-LEDs, corroborating our experiment results. This Letter provides a fundamental understanding of the light extraction behavior with optimized chip geometry to design and fabricate highly efficient micro-LEDs in a DUV spectrum of the future.

3.
Opt Lett ; 46(13): 3271-3274, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197433

RESUMO

The investigation of electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm was carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively. It was revealed that the LED chips with smaller mesa areas deliver considerably higher light output power density; meanwhile, they can sustain a higher current density, which is mainly attributed to the enhanced current spreading uniformity in micro-scale chips. Importantly, when the diameter of LED chips decreases from 300 µm to 20 µm, the peak external quantum efficiency (EQE) increases by 20%, and the EQE peak current density can be boosted from 8.85A/cm2 and 99.52A/cm2. Moreover, we observed a longer wavelength emission with enlarged full-width at half-maximum (FWHM) in the LEDs with smaller chip sizes because of the self-heating effect at high current injection. These experimental observations provide insights into the design and fabrication of high-efficiency micro-LEDs emitting in the DUV regime with different device geometries for various future applications.

4.
Opt Lett ; 46(21): 5356-5359, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724474

RESUMO

A hybrid patterned sapphire substrate (HPSS) aiming to achieve high-quality Al(Ga)N epilayers for the development of GaN-based ultraviolet light-emitting diodes (UV LEDs) has been prepared. The high-resolution X-ray diffraction measurements reveal that the Al(Ga)N epilayers grown on a HPSS and conventional patterned sapphire substrate (CPSS) have similar structural quality. More importantly, benefiting from the larger refractive index contrast between the patterned silica array and sapphire, the photons can escape from the hybrid substrate with an improved transmittance in the UV band. As a result, in comparison with the UV LEDs grown on the CPSS, the LEDs grown on the HPSS exhibit a significantly enhanced light output power by 14.5% and more than 22.9% higher peak external quantum efficiency, owing to the boost of the light extraction efficiency from the adoption of the HPSS which can be used as a promising substrate to realize high-efficiency and high-power UV LEDs of the future.

5.
Sensors (Basel) ; 20(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171976

RESUMO

In this paper, a slotted conical patch connected to a small triangular patch multiband antenna for both microwave and millimeter-wave applications is presented. The designed antenna has three characteristics. The proposed antenna is a multiband, having a compact size of 0.35λ0 × 0.35λ0 × 0.004λ0 at its lowest operational frequency, i.e., 2.4 GHz, and more importantly, it can cover both the microwave and millimeter-wave bands with a single feeding. According to the -10 dB matching bandwidth, experimental results show that the antenna operates at (2.450-2.495) GHz, (5.0-6.3) GHz, and (23-28) GHz. The reduced size, simple design, and multiband large bandwidth are some of the advantages over the reported designs in the latest literature. Both simulated and experimental results show a good agreement, and the proposed antenna can be used for wireless local area network (WLAN) applications and fifth-generation (5G) wireless communication devices.

6.
Adv Mater ; 36(1): e2307779, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009587

RESUMO

The operational principle of semiconductor devices critically relies on the band structures that ultimately govern their charge-transfer characteristics. Indeed, the precise orchestration of band structure within semiconductor devices, notably at the semiconductor surface and corresponding interface, continues to pose a perennial conundrum. Herein, for the first time, this work reports a novel postepitaxy method: thickness-tunable carbon layer decoration to continuously manipulate the surface band bending of III-nitride semiconductors. Specifically, the surface band bending of p-type aluminum-gallium-nitride (p-AlGaN) nanowires grown on n-Si can be precisely controlled by depositing different carbon layers as guided by theoretical calculations, which eventually regulate the ambipolar charge-transfer behavior between the p-AlGaN/electrolyte and p-AlGaN/n-Si interface in an electrolyte environment. Enabled by the accurate modulation of the thickness of carbon layers, a spectrally distinctive bipolar photoresponse with a controllable polarity-switching-point over a wide spectrum range can be achieved, further demonstrating reprogrammable photoswitching logic gates "XOR", "NAND", "OR", and "NOT" in a single device. Finally, this work constructs a secured image transmission system where the optical signals are encrypted through the "XOR" logic operations. The proposed continuous surface band tuning strategy provides an effective avenue for the development of multifunctional integrated-photonics systems implemented with nanophotonics.

7.
Adv Mater ; 35(28): e2300911, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912711

RESUMO

The p-n junction with bipolar characteristics sets the fundamental unit to build electronics while its unique rectification behavior constrains the degree of carrier tunability for expanded functionalities. Herein, a bipolar-junction photoelectrode employed with a gallium nitride (GaN) p-n homojunction nanowire array that operates in electrolyte is reported, demonstrating bipolar photoresponse controlled by different wavelengths of light. Significantly, with rational decoration of a ruthenium oxides (RuOx ) layer on nanowires guided by theoretical modeling, the resulting RuOx /p-n GaN photoelectrode exhibits unambiguously boosted bipolar photoresponse by an enhancement of 775% and 3000% for positive and negative photocurrents, respectively, compared to the pristine nanowires. The loading of the RuOx layer on nanowire surface optimizes surface band bending, which facilitates charge transfer across the GaN/electrolyte interface, meanwhile promoting the efficiency of redox reaction for both hydrogen evolution reaction and oxygen evolution reaction which corresponds to the negative and positive photocurrents, respectively. Finally, a dual-channel optical communication system incorporated with such photoelectrode is constructed with using only one photoelectrode to decode dual-band signals with encrypted property. The proposed bipolar device architecture presents a viable route to manipulate the carrier dynamics for the development of a plethora of multifunctional optoelectronic devices for future sensing, communication, and imaging systems.


Assuntos
Fotoquímica , Luz , Eletrólitos/química , Fotoquímica/instrumentação , Fotoquímica/métodos , Óxidos/química , Compostos de Rutênio/química , Nanofios/química
8.
ACS Nano ; 17(4): 3901-3912, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753692

RESUMO

The physicochemical properties of a semiconductor surface, especially in low-dimensional nanostructures, determine the electrical and optical behavior of the devices. Thereby, the precise control of surface properties is a prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for promoting device characteristics. Here, we report a facile approach to suppress the photocorrosion effect while boosting the photoresponse performance of n-GaN nanowires in a constructed photoelectrochemical-type photodetector by employing Co3O4 nanoclusters as a hole charging layer. Essentially, the Co3O4 nanoclusters not only alleviate nanowires from corrosion by optimizing the oxygen evolution reaction kinetics at the nanowire/electrolyte interface but also facilitate an efficient photogenerated carrier separation, migration, and collection process, leading to a significant ease of photocurrent attenuation (improved by nearly 867% after Co3O4 decoration). Strikingly, a record-high responsivity of 217.2 mA W-1 with an ultrafast response/recovery time of 0.03/0.02 ms can also be achieved, demonstrating one of the best performances among the reported photoelectrochemical-type photodetectors, that ultimately allowed us to build an underwater optical communication system based on the proposed nanowire array for practical applications. This work provides a perspective for the rational design of stable nanostructures for various applications in photo- and biosensing or energy-harvesting nanosystems.

9.
Nanoscale ; 14(45): 16829-16836, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349807

RESUMO

Nowadays, vacuum-ultraviolet (VUV) photodetectors (PDs) have attracted extensive attention owing to their potential applications in space exploration, radiation monitoring, and the semiconductor industry. Benefiting from its intrinsic ultra-wide band-gap, chemical robustness, and low-cost features, LaAlO3 shows great promise in developing next-generation compact, cheap, and easy-to-fabricate VUV PDs. In this work, we report the unique anisotropic photoresponse behavior of LaAlO3 single crystals for VUV photodetection applications. First of all, with the guidance of density functional theory (DFT) calculations along with the comprehensive material characterization, the anisotropic carrier transport behavior of LaAlO3 single crystals was confirmed. Thereafter, after exploring the metal-semiconductor-metal (MSM) device configuration along different substrate orientations, including (100), (110), and (111)-LaAlO3 single crystals, we found that the (110)-LaAlO3 VUV PD exhibits the best device performance under VUV illumination, with a responsivity of 2.23 mA W-1, a high detectivity of 3.72 × 1011 Jones, and a photo-to-dark-current ratio of 5.48 × 103. This work not only provides a feasible avenue to explore the anisotropic optoelectronic behavior of ultra-wide band-gap semiconductors but also expands the application of the low-cost oxide perovskite family in the field of VUV photodetection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA