Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Neuroinflammation ; 21(1): 155, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872149

RESUMO

Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.


Assuntos
Calicreína Plasmática , Recuperação de Função Fisiológica , Animais , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Masculino , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Trombose , AVC Isquêmico/tratamento farmacológico , Inflamação
2.
Stem Cells ; 39(2): 227-239, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33270951

RESUMO

Although the bone marrow contains most hematopoietic activity during adulthood, hematopoietic stem and progenitor cells can be recovered from various extramedullary sites. Cells with hematopoietic progenitor properties have even been reported in the adult brain under steady-state conditions, but their nature and localization remain insufficiently defined. Here, we describe a heterogeneous population of myeloid progenitors in the leptomeninges of adult C57BL/6 mice. This cell pool included common myeloid, granulocyte/macrophage, and megakaryocyte/erythrocyte progenitors. Accordingly, it gave rise to all major myelo-erythroid lineages in clonogenic culture assays. Brain-associated progenitors persisted after tissue perfusion and were partially inaccessible to intravenous antibodies, suggesting their localization behind continuous blood vessel endothelium such as the blood-arachnoid barrier. Flt3Cre lineage tracing and bone marrow transplantation showed that the precursors were derived from adult hematopoietic stem cells and were most likely continuously replaced via cell trafficking. Importantly, their occurrence was tied to the immunologic state of the central nervous system (CNS) and was diminished in the context of neuroinflammation and ischemic stroke. Our findings confirm the presence of myeloid progenitors at the meningeal border of the brain and lay the foundation to unravel their possible functions in CNS surveillance and local immune cell production.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Meninges/fisiologia , Meninges/transplante , Fatores Etários , Animais , Medula Óssea/fisiologia , Encéfalo/citologia , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Masculino , Meninges/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Proc Natl Acad Sci U S A ; 114(46): 12315-12320, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087944

RESUMO

Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/enzimologia , Isquemia Miocárdica/enzimologia , NADPH Oxidase 4/genética , Animais , Benzoxazóis/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Artéria Femoral/lesões , Regulação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Isquemia Miocárdica/prevenção & controle , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Especificidade de Órgãos , Pirazóis/farmacologia , Piridonas/farmacologia , Ratos , Transdução de Sinais , Triazóis/farmacologia
4.
Stroke ; 50(10): 2875-2882, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412755

RESUMO

Background and Purpose- The selection of appropriate neurological scores and tests is crucial for the evaluation of stroke consequences. The validity and reliability of neurological deficit scores and tests has repeatedly been questioned in ischemic stroke models in the past. Methods- In 198 male mice exposed to transient intraluminal middle cerebral artery occlusion, we examined the validity and reliability of 11 neurological scores (Bederson score 0-3, Bederson score 0-4, Bederson score 0-5, modified neurological severity [0-14], subjective overall impression [0-10], or simple neurological tests: grip test, latency to move body length test, pole test, wire hanging test, negative geotaxis test, and elevated body swing test) in the acute stroke phase, that is, after 24 hours. Combinations of neurological scores or tests for predicting infarct volume were statistically analyzed. Results- Infarct volume was left skewed (median [Q1-Q3], 78.4 [54.8-101.3] mm3). Among all tests, the Bederson (0-5; r=0.63, P<0.001), modified neurological severity (r=0.80, P<0.001), and subjective overall impression (r=-0.63, P<0.001) scores had the highest test validities, using infarct volume as external reference. Subjective overall impression had the best agreement between 5 raters (Kendall W=0.11, P<0.001). The Bederson (0-5) score discriminated infarct volume in mice with small (≤50 mm3; r=0.33, P=0.027) and large (>50 mm3; r=0.48, P<0.001) brain infarcts, all other tests only in mice with large infarcts. Combining subjective overall impression with Bederson (0-5) score explained 47.6% of the variance of infarct volume. Conclusions- Despite their simplicity, the Bederson (0-5) score, modified neurological severity score, and subjective overall impression have reasonable validity and reliability in the acute stroke phase. The Bederson (0-5) score equally distinguishes infarct volume in small and large infarcts. Visual Overview- An online visual overview is available for this article.


Assuntos
Infarto da Artéria Cerebral Média/complicações , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , Exame Neurológico/métodos , Animais , Masculino , Camundongos , Reprodutibilidade dos Testes
5.
Adv Exp Med Biol ; 1074: 511-517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721983

RESUMO

In humans cone photoreceptors are responsible for high-resolution colour vision. A variety of retinal diseases can compromise cone viability, and, at present, no satisfactory treatment options are available. Here, we present data towards establishing a reliable, high-throughput assay system that will facilitate the search for cone neuroprotective compounds using the murine-photoreceptor cell line 661 W. To further characterize 661 W cells, a retinal marker study was performed, followed by the induction of cell death using paradigms over-activating cGMP-dependent protein kinase G (PKG). We found that 661 W cells may be used to mimic specific aspects of cone degeneration and may thus be valuable for future compound screening studies.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas do Olho/fisiologia , Ensaios de Triagem em Larga Escala , Fármacos Neuroprotetores/isolamento & purificação , Células Fotorreceptoras Retinianas Cones/enzimologia , Animais , Biomarcadores , Linhagem Celular Tumoral , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Ativação Enzimática/efeitos dos fármacos , Proteínas do Olho/análise , Camundongos , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Especificidade de Órgãos , Inibidores de Fosfodiesterase/farmacologia , Purinonas/farmacologia , Células Fotorreceptoras Retinianas Cones/citologia
6.
Ann Neurol ; 79(6): 970-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043916

RESUMO

OBJECTIVE: Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. METHODS: We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. RESULTS: Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. INTERPRETATION: The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. Ann Neurol 2016;79:970-982.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator XII/uso terapêutico , Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/uso terapêutico , Trombose Intracraniana/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Albumina Sérica/uso terapêutico , Adulto , Idoso , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Fator XII/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neuroimagem , Agregação Plaquetária/fisiologia , Albumina Sérica Humana , Adulto Jovem
7.
J Neuroinflammation ; 13(1): 140, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266706

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. METHODS: A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo µPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [(18)F]DPA-714 was performed on day 1, 7, and 16 and [(18)F]FDG-µPET imaging for energy metabolism on days 2-5 after trauma using freshly synthesized radiotracers. Immediately after [(18)F]DPA-714-µPET imaging on days 7 and 16, cellular identity of the [(18)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. RESULTS: Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [(18)F]DPA-714-µPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [(18)F]FDG uptake on days 2-5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [(18)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [(18)F]DPA-714 was not increased in autoradiography or in µPET imaging. CONCLUSIONS: [(18)F]DPA-714 uptake in µPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.


Assuntos
Autorradiografia/métodos , Fluordesoxiglucose F18/metabolismo , Traumatismos Cranianos Fechados/diagnóstico por imagem , Traumatismos Cranianos Fechados/metabolismo , Microglia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Radioisótopos de Flúor/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Clin Neuroradiol ; 34(1): 135-145, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37665351

RESUMO

PURPOSE: Cerebral infarctions caused by air embolisms (AE) are a feared risk in endovascular procedures; however, the relevance and pathophysiology of these AEs is still largely unclear. The objective of this study was to investigate the impact of the origin (aorta, carotid artery or right atrium) and number of air bubbles on cerebral infarctions in an experimental in vivo model. METHODS: In 20 rats 1200 or 2000 highly calibrated micro air bubbles (MAB) with a size of 85 µm were injected at the aortic valve (group Ao), into the common carotid artery (group CA) or into the right atrium (group RA) using a microcatheter via a transfemoral access, resembling endovascular interventions in humans. Magnetic resonance imaging (MRI) using a 9.4T system was performed 1 h after MAB injection followed by finalization. RESULTS: The number (5.5 vs. 5.5 median) and embolic patterns of infarctions did not significantly differ between groups Ao and CA. The number of infarctions were significantly higher comparing 2000 and 1200 injected MABs (6 vs. 4.5; p < 0.001). The infarctions were significantly larger for group CA (median infarction volume: 0.41 mm3 vs. 0.19 mm3; p < 0.001). In group RA and in the control group no infarctions were detected. Histopathological analyses showed early signs of ischemic stroke. CONCLUSION: Iatrogenic AEs originating at the ascending aorta cause a similar number and pattern of cerebral infarctions compared to those with origin at the carotid artery. These findings underline the relevance and potential risk of AE occurring during endovascular interventions at the aortic valve and ascending aorta.


Assuntos
Embolia Aérea , Procedimentos Endovasculares , Humanos , Ratos , Animais , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/etiologia , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/etiologia , Imageamento por Ressonância Magnética , Procedimentos Endovasculares/efeitos adversos , Doença Iatrogênica
9.
J Am Heart Assoc ; 12(12): e029529, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301761

RESUMO

Background Typically defined as a thromboinflammatory disease, ischemic stroke features early and delayed inflammatory responses, which determine the extent of ischemia-related brain damage. T and natural killer cells have been implicated in neuronal cytotoxicity and inflammation, but the precise mechanisms of immune cell-mediated stroke progression remain poorly understood. The activating immunoreceptor NKG2D is expressed on both natural killer and T cells and may be critically involved. Methods and Results An anti-NKG2D blocking antibody alleviated stroke outcome in terms of infarct volume and functional deficits, coinciding with reduced immune cell infiltration into the brain and improved survival in the animal model of cerebral ischemia. Using transgenic knockout models devoid of certain immune cell types and immunodeficient mice supplemented with different immune cell subsets, we dissected the functional contribution of NKG2D signaling by different NKG2D-expressing cells in stroke pathophysiology. The observed effect of NKG2D signaling in stroke progression was shown to be predominantly mediated by natural killer and CD8+ T cells. Transfer of T cells with monovariant T-cell receptors into immunodeficient mice with and without pharmacological blockade of NKG2D revealed activation of CD8+ T cells irrespective of antigen specificity. Detection of the NKG2D receptor and its ligands in brain samples of patients with stroke strengthens the relevance of preclinical observations in human disease. Conclusions Our findings provide a mechanistic insight into NKG2D-dependent natural killer- and T-cell-mediated effects in stroke pathophysiology.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Isquemia Encefálica/metabolismo , Infarto Cerebral , Acidente Vascular Cerebral/metabolismo
10.
J Thromb Haemost ; 21(7): 1957-1966, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37054918

RESUMO

BACKGROUND: Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca2+) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca2+ are key players in the complex orchestration of platelet activation. OBJECTIVES: The present study aimed to determine the impact of NPC1 on Ca2+ mobilization during platelet activation in thrombo-occlusive diseases. METHODS: Using MK/platelet-specific knockout mice of Npc1 (Npc1Pf4∆/Pf4∆), ex vivo and in vitro approaches as well as in vivo models of thrombosis, we investigated the effect of Npc1 on platelet function and thrombus formation. RESULTS: We showed that Npc1Pf4∆/Pf4∆ platelets display increased sphingosine levels and a locally impaired membrane-associated and SERCA3-dependent Ca2+ mobilisation compared to platelets from wildtype littermates (Npc1lox/lox). Further, we observed decreased platelet. CONCLUSION: Our findings highlight that NPC1 regulates membrane-associated and SERCA3-dependent Ca2+ mobilization during platelet activation and that MK/platelet-specific ablation of Npc1 protects against experimental models of arterial thrombosis and myocardial or cerebral ischemia/reperfusion injury.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Camundongos , Animais , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Camundongos Knockout
11.
Transl Stroke Res ; 13(1): 197-211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34105078

RESUMO

Rag1-/- mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1-/- mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1nullIL2rgnull (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1-/- and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1-/- NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1-/- were comparable in number and function to those in WT mice. Rag1-/- mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1-/- controls. Our results indicate that NK cells from Rag1-/- mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Infarto da Artéria Cerebral Média , Células Matadoras Naturais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout
12.
Brain Behav Immun Health ; 24: 100493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35928516

RESUMO

Platelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage. However, the functional role of platelets during long-term stroke recovery has not been elucidated so far. Thus, we here examined the impact of platelet depletion on post-stroke recovery after transient middle cerebral artery occlusion (tMCAO) in adult male mice. Platelet depleting antibodies or isotype control were applied from day 3-28 after tMCAO in mice matched for infarct size. Long-term functional recovery was assessed over the course of 28 days by behavioural testing encompassing motor and sensorimotorical functions, as well as anxiety-like or spontaneous behaviour. Whole brain flow cytometry and light sheet fluorescent microscopy were used to identify resident and infiltrated immune cell types, and to determine the effects of platelet depletion on the cerebral vascular architecture, respectively. We found that delayed platelet depletion does not improve long-term functional outcome in the tMCAO stroke model. Immune cell abundance, the extent of thrombosis and the organisation of the cerebral vasculature were also comparable between platelet-depleted and control mice. Our study demonstrates that, despite their critical role in the acute stroke setting, platelets appear to contribute only marginally to tissue reorganisation and functional recovery at later stroke stages.

13.
Nat Commun ; 13(1): 1823, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383158

RESUMO

Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.


Assuntos
Traumatismo por Reperfusão , Trombose , Animais , Plaquetas/metabolismo , Humanos , Camundongos , Ativação Plaquetária , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Trombose/metabolismo
14.
Dev Biol ; 331(2): 281-91, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450574

RESUMO

Leftward flow of extracellular fluid breaks the bilateral symmetry of most vertebrate embryos, manifested by the ensuing asymmetric induction of Nodal signaling in the left lateral plate mesoderm (LPM). Flow is generated by rotational beating of polarized monocilia at the posterior notochord (PNC; mammals), Kupffer's vesicle (KV; teleost fish) and the gastrocoel roof plate (GRP; amphibians). To manipulate flow in a defined way we cloned dynein heavy chain genes dnah5, 9 and 11 in Xenopus. dnah9 expression was closely related to motile cilia from neurulation onwards. Morphant tadpoles showed impaired epidermal ciliary beating. Leftward flow at the GRP was absent, resulting in embryos with loss of asymmetric marker gene expression. Remarkably, unilateral knockdown on the right side of the GRP did not affect laterality, while left-sided ablation of flow abolished marker gene expression. Thus, flow was required exclusively on the left side of the GRP to break symmetry in the frog. Our data suggest that the substrate of flow is generated within the GRP and not at its margin, disqualifying Nodal as a candidate morphogen.


Assuntos
Líquido Extracelular/fisiologia , Fatores de Determinação Direita-Esquerda/fisiologia , Mesoderma/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Padronização Corporal/fisiologia , Cílios/fisiologia , Técnicas de Silenciamento de Genes , Larva , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Notocorda/embriologia , Notocorda/crescimento & desenvolvimento , Notocorda/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/fisiologia
15.
PLoS One ; 12(8): e0182822, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796818

RESUMO

BACKGROUND: While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr-/- mouse model. METHODS: We used Ldlr-/- mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr-/- mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. RESULTS: We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr-/- mice compared to all other groups (P < 0.05). Ldlr-/- animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr-/- mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr-/- mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions. CONCLUSIONS: In Ldlr-/- mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr-/- mice appear to be an adequate animal model for research into CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais/etiologia , Colesterol/sangue , Hipercolesterolemia/complicações , Receptores de LDL/genética , Animais , Barreira Hematoencefálica/fisiopatologia , Encéfalo/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/sangue , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatologia , Masculino , Camundongos , Camundongos Knockout
16.
J Cereb Blood Flow Metab ; 36(9): 1508-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27354091

RESUMO

Promising results have been reported in preclinical stroke target validation for pharmacological principles that disrupt the N-methyl-D-aspartate receptor-post-synaptic density protein-95-neuronal nitric oxide synthase complex. However, post-synaptic density protein-95 is also coupled to potentially neuroprotective mechanisms. As post-synaptic density protein-95 inhibitors may interfere with potentially neuroprotective mechanisms and sufficient validation has often been an issue in translating basic stroke research, we wanted to close that gap by comparing post-synaptic density protein-95 inhibitors with NOS1(-/-) mice and a NOS inhibitor. We confirm the deleterious role of NOS1 in stroke both in vivo and in vitro, but find three pharmacological post-synaptic density protein-95 inhibitors to be therapeutically ineffective.


Assuntos
Lesões Encefálicas/prevenção & controle , Isquemia Encefálica/prevenção & controle , Guanilato Quinases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Animais , Proteína 4 Homóloga a Disks-Large , Inibidores Enzimáticos/farmacologia , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Ligação Proteica
17.
Front Cell Neurosci ; 8: 345, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25404891

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite improvements in acute intensive care, there are currently no specific therapies to ameliorate the effects of TBI. Successful therapeutic strategies for TBI should target multiple pathophysiologic mechanisms that occur at different stages of brain injury. The kallikrein-kinin system is a promising therapeutic target for TBI as it mediates key pathologic events of traumatic brain damage, such as edema formation, inflammation, and thrombosis. Selective and specific kinin receptor antagonists and inhibitors of plasma kallikrein and coagulation factor XII have been developed, and have already shown therapeutic efficacy in animal models of stroke and TBI. However, conflicting preclinical evaluation, as well as limited and inconclusive data from clinical trials in TBI, suggests that caution should be taken before transferring observations made in animals to humans. This review summarizes current evidence on the pathologic significance of the kallikrein-kinin system during TBI in animal models and, where available, the experimental findings are compared with human data.

18.
J Neuroimmunol ; 274(1-2): 125-31, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25081505

RESUMO

Inflammation is a pathological hallmark of traumatic brain injury (TBI). Recent evidence suggests that immune cells such as lymphocytes are of particular relevance for lesion development after TBI. FTY720, a sphingosine-1-phosphate (S1P) receptor modulator, sequesters T lymphocytes in lymphoid organs and has been shown to improve outcome in a variety of neurological disease models. We investigated the mode of FTY720 action in models of TBI. Focal cortical cryolesion was induced in C57BL/6 mice treated with FTY720 (1mg/kg) or vehicle immediately before injury. Lesion size was assessed 24h later. Immune cells in the blood and brain were counted by flow cytometry and immunocytochemistry. The integrity of the blood-brain barrier was analyzed using Evans Blue dye. To validate the findings in a diffuse brain trauma model, FTY720-treated mice and controls were subjected to weight drop contusion injury and neurological deficits were assessed until day 7. As expected FTY720 significantly lowered the numbers of circulating lymphocytes and attenuated the invasion of immune cells into the damaged brain parenchyma. However, FTY720 was unable to improve lesion size or functional outcome in both trauma models at either stage, i.e. acute vs chronic. Accordingly, the extent of blood-brain barrier disruption and neuronal apoptosis was similar between FTY720-treated mice and controls. We conclude that pharmacological S1P receptor modulation is an unfavorable strategy to combat TBI. Moreover, our findings put into perspective the pathophysiological relevance of inflammatory cells in traumatic neurodegeneration.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/imunologia , Encefalite/tratamento farmacológico , Encefalite/imunologia , Propilenoglicóis/farmacologia , Esfingosina/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/imunologia , Modelos Animais de Doenças , Cloridrato de Fingolimode , Citometria de Fluxo , Imunossupressores/imunologia , Imunossupressores/farmacologia , Linfopenia/induzido quimicamente , Linfopenia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Propilenoglicóis/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Esfingosina/imunologia , Esfingosina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento
19.
Exp Transl Stroke Med ; 6(1): 1, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24461046

RESUMO

BACKGROUND: There is growing evidence that endothelial failure and subsequent blood brain barrier (BBB) breakdown initiate cerebral small vessel disease (CSVD) pathology. In spontaneously hypertensive stroke-prone rats (SHRSP) endothelial damage is indicated by intraluminal accumulations of erythrocytes (erythrocyte thrombi) that are not observed with current magnetic resonance imaging techniques. Two-photon microscopy (2 PM) offers the potential for real-time direct detection of the small vasculature. Thus, within this pilot study we investigated the sensitivity of 2 PM to detect erythrocyte thrombi expressing initiating CSVD phenomena in vivo. METHODS: Eight SHRSP and 13 Wistar controls were used for in vivo imaging and subsequent histology with haematoxylin-eosin (HE). For 2 PM, cerebral blood vessels were labeled by fluorescent Dextran (70 kDa) applied intraorbitally. The correlation between vascular erythrocyte thrombi observed by 2 PM and HE-staining was assessed. Artificial surgical damage and parenchymal Dextran distribution were analyzed postmortem. RESULTS: Dextran was distributed within the small vessel walls and co-localized with IgG.Artificial surgical damage was comparable between SHRSP and Wistar controls and mainly affected the small vasculature. In fewer than 20% of animals there was correlation between erythrocyte thrombi as observed with 2 PM and histologically with HE. CONCLUSIONS: Contrary to our initial expectations, there was little agreement between intravital 2 PM imaging and histology for the detection of erythrocyte thrombi. Two-photon microscopy is a valuable technique that complements but does not replace the value of conventional histology.

20.
Front Cell Neurosci ; 8: 269, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249935

RESUMO

Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA