Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microbes Infect ; : 105385, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950642

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1-Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.

2.
Front Cell Dev Biol ; 8: 439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582714

RESUMO

The World Health Organization (WHO) has estimated that in 2016, there were 87 million new cases of gonorrhea. Gonorrhea is caused by the sexually transmitted human-exclusive agent Neisseria gonorrhoeae, a Gram-negative diplococcus that causes cervicitis in females and urethritis in males and may lead to more severe complications. Currently, there is no vaccine against N. gonorrhoeae. Its resistance to antibiotics has been increasing in the past few years, reducing the range of treatment options. N. gonorrhoeae requires a surface protein/receptor (Opa proteins, porin, Type IV pili, LOS) to adhere to and invade epithelial cells. During invasion and transcytosis, N. gonorrhoeae is targeted by the autophagy pathway, a cellular maintenance process which balances sources of energy at critical times by degrading damaged organelles and macromolecules in the lysosome. Autophagy is an important host defense mechanism which targets invading pathogens. Based on transmission electron microscopy (TEM) analysis, the intracellular bacteria occupy the autophagosome, a double-membraned vesicle that is formed around molecules or microorganisms during macroautophagy and fuses with lysosomes for degradation. Most of the gonococci end up in autolysosomes for degradation, but a subpopulation of the intracellular bacteria inhibits the maturation of the autophagosome and its fusion with lysosomes by activating mTORC1 (a known suppressor of the autophagy signaling), thus escaping autophagic elimination. This mini review focuses on the cellular features of N. gonorrhoeae during epithelial cell invasion, with a particular focus on how N. gonorrhoeae evades the autophagy pathway.

3.
Front Immunol ; 11: 1774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973747

RESUMO

Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5-7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.


Assuntos
Doença de Chagas/parasitologia , Proteoma , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Biologia Computacional , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Via Secretória , Transdução de Sinais , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
4.
J Mater Chem B ; 6(44): 7306-7316, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254640

RESUMO

Nanoparticle delivery to tumor tissue is one of the most important applications of nanomedicine. However, the literature shows that this pharmacological event is highly-affected by several tumor biology characteristics, including tumor size and maturation. Thus, the objective of the present study is to report on the investigation of the biodistribution of a lipid nanoemulsion (NE) in a breast cancer tumor model using in vivo imaging techniques. As highlights of this study, we can indicate that the biodistribution was measured in different tumor sites (primary and metastatic tumors) and in the same experimental mice for four subsequent weeks. With this approach it is possible to observe that the NE tumor delivery is significantly altered during tumor growth and metastasis progression. Furthermore, in the present report we introduce a phenomenological mathematical model that successfully explains the delivery behavior of a hydrophobic infrared fluorescent NE marker to both primary tumor and metastatic lesions. We believe that these data, in addition to the phenomenological mathematical model, are relevant to understanding how the stage of tumor development can alter macromolecule and/or nanoparticle delivery to tumor tissues, thus improving the efficacy of the passive delivery features promoted by tumor biology.

5.
Biosci. j. (Online) ; 37: e37064, Jan.-Dec. 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1359149

RESUMO

Despite the importance of passion fruit for the Brazilian fruit market, there are still many agronomic and fruit quality problems to be solved, in order to increase this crop performance. The objective of this study was to evaluate the quality of twelve genotypes of wild, sweet and yellow passion fruit, aiming to identify promising materials considering fruit quality, in Federal District, Brazil. An experiment was carried out at the Água Limpa Farm of the Universidade de Brasília (UnB) from 2016 to 2018, in a randomized block design, with 12 treatments, 4 replicates and 6 plants/plot. At the harvesting time, six fruits per plot were randomly collected for the following physicochemical analysis: fruit mass, pulp mass with and without seeds, length/longitudinal diameter, width/transverse diameter, length/width ratio, husk thickness, predominant color of the pulp (L*, C*, h*), number of seeds, seed size, total soluble solids content, total titratable acidity, total soluble solids/total titratable acidity ratio and pH. High heritability values ​​and relation of genetic/environment variation coefficients ratio were observed for most of the characteristics evaluated. The genotypes of yellow passion fruit MAR20#21 P2 x FB 200 P1 R2 and MAR20#19 ROXO R4 x ECRAM P3 R3 showed the best characteristics of fruit mass and pulp mass with seed. All the genotypes studied showed values ​​of total soluble solids above 11ºBrix. Positive and significant correlation was observed between fruit mass and length/width ratio, indicating that oblong fruits have higher fruit mass.


Assuntos
Colorimetria , Passiflora , Fenômenos Químicos , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA