Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ther ; 31(9): 2600-2611, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37452494

RESUMO

B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.


Assuntos
Adenoviridae , Doenças Transmissíveis , Camundongos , Humanos , Animais , Adenoviridae/genética , Vetores Genéticos/genética , Terapia Genética/métodos , Proteínas Virais/genética , Linfócitos B
2.
DNA Cell Biol ; 42(6): 274-288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576491

RESUMO

Together with an anti-tumor immune response, oncolysis using a recombinant viral vector promises to eliminate cancer cells by both gene transfer and host-mediated functions. In this study we explore oncolysis induced by nonreplicating adenoviral vectors used for p14ARF and interferon-ß (hIFNß) gene transfer in human melanoma cell lines, revealing an unexpected role for p14ARF in promoting cellular responses predictive of immune stimulation. Oncolysis was confirmed when UACC-62 (p53 wild-type) cells succumbed upon p14ARF gene transfer in vitro, whereas SK-Mel-29 (p53-mutant) benefitted from its combination with hIFNß. In the case of UACC-62, in situ gene therapy in nude mice yielded reduced tumor progression in response to the p14ARF and hIFNß combination. Potential for immune stimulation was revealed where p14ARF gene transfer in vitro was sufficient to induce emission of immunogenic cell death factors in UACC-62 and upregulate pro-immune genes, including IRF1, IRF7, IRF9, ISG15, TAP-1, and B2M. In SK-Mel-29, p14ARF gene transfer induced a subset of these factors. hIFNß was, as expected, sufficient to induce these immune-stimulating genes in both cell lines. This work is a significant advancement for our melanoma gene therapy strategy because we revealed not only the induction of oncolysis, but also the potential contribution of p14ARF to immune stimulation.


Assuntos
Melanoma , Proteína Supressora de Tumor p14ARF , Camundongos , Animais , Humanos , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Nus , Apoptose/fisiologia , Linhagem Celular , Melanoma/genética , Melanoma/terapia
3.
NPJ Vaccines ; 6(1): 97, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354082

RESUMO

Adenoviral vectors have been explored as vaccine agents for a range of infectious diseases, and their ability to induce a potent and balanced immune response made them logical candidates to apply to the COVID-19 pandemic. The unique molecular characteristics of these vectors enabled the rapid development of vaccines with advanced designs capable of overcoming the biological challenges faced by early adenoviral vector systems. These successes and the urgency of the COVID-19 situation have resulted in a flurry of candidate adenoviral vector vaccines for COVID-19 from both academia and industry. These vaccines represent some of the lead candidates currently supported by Operation Warp Speed and other government agencies for rapid translational development. This review details adenoviral vector COVID-19 vaccines currently in human clinical trials and provides an overview of the new technologies employed in their design. As these vaccines have formed a cornerstone of the COVID-19 global vaccination campaign, this review provides a full consideration of the impact and development of this emerging platform.

4.
Cancer Biol Ther ; 22(4): 301-310, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33853514

RESUMO

While treatments for colorectal cancer continue to improve, some 50% of patients succumb within 5 years, pointing to the need for additional therapeutic options. We have developed a modified non-replicating adenoviral vector for gene transfer, called AdRGD-PG, which offers improved levels of transduction and transgene expression. Here, we employ the p53-responsive PG promoter to drive expression of p53 or human interferon-ß (hIFNß) in human colorectal cancer cell lines HCT116wt (wtp53), HCT116-/- (p53 deficient) and HT29 (mutant p53). The HCT116 cell lines were both easily killed with p53 gene transfer, while combined p53 and hIFNß cooperated for the induction of HT29 cell death and emission of immunogenic cell death (ICD) markers. Elevated annexinV staining and caspase 3/7 activity point to cell death by a mechanism consistent with apoptosis. P53 gene transfer alone or in combination with hIFNß sensitized all cell lines to chemotherapy, permitting the application of low drug doses while still achieving significant loss of viability. While endogenous p53 status was not sufficient to predict response to treatment, combined p53 and hIFNß provided an additive effect in HT29 cells. We propose that this approach may prove effective for the treatment of colorectal cancer, permitting the use of limited drug doses.


Assuntos
Neoplasias Colorretais , Interferon beta , Proteína Supressora de Tumor p53 , Apoptose/genética , Morte Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Técnicas de Transferência de Genes , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/genética
5.
Front Immunol ; 11: 576658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193370

RESUMO

Immune evasion is an important cancer hallmark and the understanding of its mechanisms has generated successful therapeutic approaches. Induction of immunogenic cell death (ICD) is expected to attract immune cell populations that promote innate and adaptive immune responses. Here, we present a critical advance for our adenovirus-mediated gene therapy approach, where the combined p14ARF and human interferon-ß (IFNß) gene transfer to human melanoma cells led to oncolysis, ICD and subsequent activation of immune cells. Our results indicate that IFNß alone or in combination with p14ARF was able to induce massive cell death in the human melanoma cell line SK-MEL-147, though caspase 3/7 activation was not essential. In situ gene therapy of s.c. SK-MEL-147 tumors in Nod-Scid mice revealed inhibition of tumor growth and increased survival in response to IFNß alone or in combination with p14ARF. Emission of critical markers of ICD (exposition of calreticulin, secretion of ATP and IFNß) was stronger when cells were treated with combined p14ARF and IFNß gene transfer. Co-culture of previously transduced SK-MEL-147 cells with monocyte-derived dendritic cells (Mo-DCs) derived from healthy donors resulted in increased levels of activation markers HLA-DR, CD80, and CD86. Activated Mo-DCs were able to prime autologous and allogeneic T cells, resulting in increased secretion of IFNγ, TNF-α, and IL-10. Preliminary data showed that T cells primed by Mo-DCs activated with p14ARF+IFNß-transduced SK-MEL-147 cells were able to induce the loss of viability of fresh non-transduced SK-MEL-147 cells, suggesting the induction of a specific cytotoxic population that recognized and killed SK-MEL-147 cells. Collectively, our results indicate that p14ARF and IFNß delivered by our adenoviral system induced oncolysis in human melanoma cells accompanied by adaptive immune response activation and regulation.


Assuntos
Adenoviridae/fisiologia , Imunoterapia/métodos , Interferon beta/genética , Melanoma/terapia , Linfócitos T/imunologia , Proteína Supressora de Tumor p14ARF/genética , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Terapia Genética , Humanos , Ativação Linfocitária , Melanoma/genética , Camundongos , Camundongos SCID , Terapia Viral Oncolítica , Carga Tumoral , Evasão Tumoral
6.
Cell Death Dis ; 10(2): 143, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760703

RESUMO

Protein disulfide isomerases including PDIA1 are implicated in cancer progression, but underlying mechanisms are unclear. PDIA1 is known to support vascular Nox1 NADPH oxidase expression/activation. Since deregulated reactive oxygen species (ROS) production underlies tumor growth, we proposed that PDIA1 is an upstream regulator of tumor-associated ROS. We focused on colorectal cancer (CRC) with distinct KRas activation levels. Analysis of RNAseq databanks and direct validation indicated enhanced PDIA1 expression in CRC with constitutive high (HCT116) vs. moderate (HKE3) and basal (Caco2) Ras activity. PDIA1 supported Nox1-dependent superoxide production in CRC; however, we first reported a dual effect correlated with Ras-level activity: in Caco2 and HKE3 cells, loss-of-function experiments indicate that PDIA1 sustains Nox1-dependent superoxide production, while in HCT116 cells PDIA1 restricted superoxide production, a behavior associated with increased Rac1 expression/activity. Transfection of Rac1G12V active mutant into HKE3 cells induced PDIA1 to become restrictive of Nox1-dependent superoxide, while in HCT116 cells treated with Rac1 inhibitor, PDIA1 became supportive of superoxide. PDIA1 silencing promoted diminished cell proliferation and migration in HKE3, not detectable in HCT116 cells. Screening of cell signaling routes affected by PDIA1 silencing highlighted GSK3ß and Stat3. Also, E-cadherin expression after PDIA1 silencing was decreased in HCT116, consistent with PDIA1 support of epithelial-mesenchymal transition. Thus, Ras overactivation switches the pattern of PDIA1-dependent Rac1/Nox1 regulation, so that Ras-induced PDIA1 bypass can directly activate Rac1. PDIA1 may be a crucial regulator of redox-dependent adaptive processes related to cancer progression.


Assuntos
Neoplasias do Colo/metabolismo , NADPH Oxidase 1/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células CACO-2 , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transfecção , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Clinics (Sao Paulo) ; 73(suppl 1): e479s, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208166

RESUMO

While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-ß cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Imunoterapia/métodos , Interferon beta/uso terapêutico , Neoplasias/terapia , Fases de Leitura/genética , Morte Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Neoplasias/imunologia , Proteína Supressora de Tumor p14ARF/genética
8.
Oncotarget ; 8(41): 71249-71284, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050360

RESUMO

During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-ß, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/ß share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/ß, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/ß has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/ß have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied.

9.
Mol Biol Int ; 2014: 490308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25548674

RESUMO

Aim. Periodontitis is an inflammatory disease that affects the teeth supporting structures, triggered by periodontal pathogens, and is influenced by environmental and genetic factors. Genes encoding molecules related to the immune response, such as cytokine, are the main candidates for polymorphisms analysis and may be possibly associated with this pathology. A G/C promoter polymorphism on the IL6 gene has been shown to affect basal IL-6 levels. The aim of this study was to investigate the association between the IL6 c.-174G>C polymorphism and periodontitis in individuals from Vitória da Conquista, Bahia, Brazil. Material and Methods. Three hundred and thirty individuals (134 cases, 196 controls) were genotyped for the IL6 c.-174G>C by MS-PCR technique. Concentrations of salivary IL-6 were determined by ELISA method. Results. The IL6 c.-174G>C polymorphism was associated with periodontitis when comparing the distribution of genotypes between patients with periodontitis and control subjects. The GC genotype appeared as a protective factor for periodontitis. Results showed increased levels of salivary IL-6 in periodontitis patients. Nevertheless, there was no relationship between the concentrations of IL-6 and genotypes when comparing the case and control groups. Conclusions. Our data indicate an association between IL6 c.-174G>C polymorphism and periodontitis and showed that IL-6 may be considered an important marker for periodontitis.

10.
Clinics ; 73(supl.1): e479s, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-952830

RESUMO

While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.


Assuntos
Humanos , Terapia Genética/métodos , Fases de Leitura/genética , Interferon beta/uso terapêutico , Técnicas de Transferência de Genes , Imunoterapia/métodos , Neoplasias/terapia , Morte Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteína Supressora de Tumor p14ARF/genética , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA