RESUMO
Beekeeping has experienced a great expansion worldwide. Nowadays, several conventional pesticides, some organic acids, and essential oil components are the main means of chemical control used against Varroa destructor, an ectoparasite that may contribute to the colony collapse disorders. Varroa resistance against conventional pesticides has already been reported; therefore it is imperative to look for alternative control agents to be included in integrated pest management programs. A good alternative seems to be the use of plant essential oils (EOs) which, as natural products, are less toxic and leave fewer residues. Within this context, a bioprospecting program of the local flora searching for botanical pesticides to be used as varroacides was launched. A primary screening (driven by laboratory assays testing for anti-Varroa activity, and safety to bees) led us to select the EOs from Eupatorium buniifolium (Asteraceae) for follow up studies. We have chemical characterized EOs from twigs and leaves collected at different times. The three E. buniifolium EOs tested were active against Varroa in laboratory assays; however, there are differences that might be attributable to chemical differences also found. The foliage EO was selected for a preliminary field trial (on an experimental apiary with 40 hives) that demonstrated acaricidal activity when applied to the hives. Although activity was less than that for oxalic acid (the positive control), this EO was less toxic to bees than the control, encouraging further studies.
Assuntos
Acaricidas/farmacologia , Eupatorium/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Varroidae/efeitos dos fármacos , Acaricidas/química , Animais , Abelhas/efeitos dos fármacos , Resistência a Inseticidas , Extratos Vegetais/química , Estações do AnoRESUMO
In the past few years there has been an increasing interest for the study of honey bee populations that are naturally resistant to the ectoparasitic mite Varroa destructor, aiming to identify the mechanisms that allow the bees to limit the reproduction of the mite. In eastern Uruguay there are still bees resistant to mites that survive without acaricides. In order to determine if the differential resistance to V. destructor was maintained in other environments, a reciprocal transplant experiment was performed between the mite-resistant bee colonies and the mite-susceptible bee colonies from the east and the west of the country, respectively, infesting bees with local mites. In both regions, the mite-resistant colonies expressed a higher hygienic behavior and presented a higher phoretic mites/reproductive mites and mites in drone cells/mites in worker cells ratio than the mite-susceptible colonies. All the mite-susceptible colonies died during fall-winter, while a considerable number of mite-resistant colonies survived until spring, especially in the east of the country. This study shows that the bees in the east of the country maintain in good measure the resistance to V. destructor in other regions and leaves open the possibility that the mites of the two populations have biases in the reproductive behavior.
RESUMO
The purpose of this study was to estimate the acaricide susceptibility of Varroa destructor populations from Uruguay, which had never been exposed to synthetic acaricides. It was also to determine whether acaricide resistance to coumaphos occurred in apiaries in which acaricide rotation had been applied. Bioassays with acaricides against mite populations that had never been exposed to synthetic acaricides were performed, also against mite populations in which control failures with coumaphos had been reported. Additionally, coumaphos' effectiveness in honeybee colonies was experimentally tested. The lethal concentration that kills 50% of the exposed animals (LC(50)) for susceptible mite populations amounted to 0.15 µg/Petri dish for coumaphos and to less than 0.3 µg/Petri dish for the other acaricides. Coumaphos LC(50) was above 40 µg/Petri dish for resistant mites. The effectiveness of coumaphos in honeybee colonies parasitized by V. destructor ranged from 17.6% to 93.9%. LC(50) for mite populations susceptible to the most commonly applied miticides was determined, and the first case of coumaphos resistance recorded in Uruguay was established.
Assuntos
Acaricidas/farmacologia , Resistência a Medicamentos , Varroidae/efeitos dos fármacos , Animais , Abelhas/parasitologia , Cumafos/farmacologia , Análise de Sobrevida , UruguaiRESUMO
The ectoparasite Varroa destructor is the greatest biotic threat of honey bees Apis mellifera in vast regions of the world. Recently, the study of natural mite-resistant populations has gained much interest to understand the action of natural selection on the mechanisms that limit the mite population. In this study, the components of the A. mellifera-V. destructor relationship were thoroughly examined and compared in resistant and susceptible honey bee populations from two regions of Uruguay. Mite-resistant honey bees have greater behavioral resistance (hygienic and grooming behaviors) than susceptible honey bees. At the end of the summer, resistant honey bees had fewer mites and a lower deformed wing virus (DWV) viral load than susceptible honey bees. DWV variant A was the only detected variant in honey bees and mites. Molecular analysis by Short Tandem Repeat showed that resistant honey bees were Africanized (A. m. scutellata hybrids), whereas susceptible honey bees were closer to European subspecies. Furthermore, significant genetic differentiation was also found between the mite populations. The obtained results show that the natural resistance of honey bees to V. destructor in Uruguay depends on several factors and that the genetic variants of both organisms can play a relevant role.
RESUMO
The microsporidium Nosema ceranae is an emergent pathogen of European honeybees Apis mellifera. Using a PCR-RFLP diagnosis, 29 samples of infected honeybees obtained in 2007-2008 (N=26), 2004 (N=2) and before 1990 (N=1) were analyzed for the presence of Nosema apis and N. ceranae. Only N. ceranae was found in all samples, indicating that this species dispersed to Uruguay (and likely the region) at some time before 1990. The presence of N. ceranae in Uruguay is not associated with an increase of Nosemosis, and its role in colony loss seems to be irrelevant.
Assuntos
Abelhas/microbiologia , Nosema/isolamento & purificação , Animais , Geografia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , UruguaiRESUMO
For more than 60 years, sporadic cases of massive summer honey bee larvae mortality in colonies located near freshwater systems with abundant riparian vegetation have been reported in Uruguay. This odd phenomenon, known as "River disease" by beekeepers, can lead to colony death by depopulation. The aim of this study was to detect the causes of larvae death. Different experiments and analyses were performed using affected apiaries located between two important water courses. 1 day old larvae were the most susceptible and substances that killed the larvae were present in the nectar but not in the pollen. A palynological analysis of nectar samples showed that bees collect this resource from commonly pollinated floral species in the country. However, abundant fungi spores and conidia were found, which indicates that the bees also collected honeydews. In the riparian vegetation, bees were observed collecting the secretions of the planthopper Epormenis cestri on Sebastiania schottiana trees. It was found that the mortality period of larvae overlaps with the presence of E. cestri. Larvae maintained in the laboratory were fed (i) nectar from healthy colonies, (ii) nectar from affected colonies, and (iii) secretions of E. cestri. The mortality of the larvae that received nectar from colonies affected with River disease and secretions of E. cestri was higher than the mortality of those receiving nectar from healthy colonies. This represents the first report of planthopper honeydew causing mass larval mortality in honey bees.
Assuntos
Colapso da Colônia , Euphorbiaceae/química , Insetos/metabolismo , Larva , Animais , UruguaiRESUMO
The beehive as a quantitative monitor of pesticide residues applied over a soybean crop was studied through a semi field experiment of controlled exposure of honey bees to pesticides in macro tunnels. The distribution within exposed beehives of pesticides commonly used in soybean plantation, was assessed. Residue levels of insecticides in soybean leaves, honey bees, wax, honey and pollen were analyzed. The transference from pesticides present in the environment into the beehive was evidenced. The obtained results allow relating pesticide concentrations present in the environment with traces found in foraging bees. Therefore, pesticide transference ratios could be calculated for each detected compound (acetamiprid, imidacloprid and thiamethoxam) which showed a linear inverse trend with their 1-octanol/water partition coefficient (Kow). The least transferred pesticide to the hive (acetamiprid) has the highest vapor pressure (Vp). This study gives new insights on the usefulness of monitoring the environment through beehives aiming to evaluate if agroecosystems remain sustainable. It also contributes to generate valuable information for model building aiming to predict environmental quality through beehive's analysis.
Assuntos
Abelhas , Mel/análise , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Animais , Folhas de Planta/química , Pólen/química , Glycine max , Ceras/análiseRESUMO
Beehive products could be powerful monitors of pesticide residues originating in agroecosystems during production cycles. Their ready availability provides enough samples to perform analytical determinations, but their chemical complexity makes residue analysis a real challenge. Taking advantage of the plasticity of QuEChERS coupled to LC-MS/MS, validated methodologies were developed for bees, honey, beeswax, and pollen and applied to real samples for the simultaneous determination of 19 of the most employed pesticides in intensive cropping fields. Beehives placed in Uruguayan agroecosystems accumulated the pesticides thiacloprid, imidacloprid, methomyl, carbaryl, hexythiazox, azoxystrobin, pyraclostrobin, tebuconazole, and haloxyfop-methyl at 0.0001-0.01 mg/kg levels. The oscillations on the amount and occurrence of residue findings for specific apiaries were correlated statistically with the sampling season and the agroecosystem where the beehives were located, showing the potential of bees and bee products to record relevant information to survey the chemicals applied in their surroundings.