Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338893

RESUMO

This study explores the impact of antiretroviral administration on the expression of human endogenous retroviruses (HERVs), cell growth, and invasive capability of human melanoma cell lines in culture. We investigated three antiretrovirals-lamivudine, doravirine, and cabotegravir-in A375, FO-1, and SK-Mel-28, BRAF-mutated, and in MeWo, P53-mutated, melanoma cell lines. The findings indicate a general capability of these drugs to downregulate the expression of HERV-K Pol and Env genes and hinder cell viability, mobility, and colony formation capacity of melanoma cells. The antiretroviral drugs also demonstrate selectivity against malignant cells, sparing normal human epithelial melanocytes. The study reveals that the integrase inhibitor cabotegravir is particularly effective in inhibiting cell growth and invasion across different cell lines in comparison with lamivudine and doravirine, which are inhibitors of the viral reverse transcriptase enzyme. The investigation further delves into the molecular mechanisms underlying the observed effects, highlighting the potential induction of ferroptosis, apoptosis, and alterations in cell cycle regulatory proteins. Our findings showed cytostatic effects principally revealed in A375, and SK-Mel-28 cell lines through a downregulation of retinoblastoma protein phosphorylation and/or cyclin D1 expression. Signs of ferroptosis were detected in both A375 cells and FO-1 cells by a decrease in glutathione peroxidase 4 and ferritin expression, as well as by an increase in transferrin protein levels. Apoptosis was also detected in FO-1 and SK-Mel-28, but only with cabotegravir treatment. Moreover, we explored the expression and activity of the stimulator of interferon genes (STING) protein and its correlation with programmed death-ligand 1 (PD-L1) expression. Both the STING activity and PD-L1 expression were decreased, suggesting that the antiretroviral treatments may counteract the detrimental effects of PD-L1 expression activation through the STING/interferon pathway triggered by HERV-K. Finally, this study underscores the potential therapeutic significance of cabotegravir in melanoma treatment. The findings also raise the prospect of using antiretroviral drugs to downregulate PD-L1 expression, potentially enhancing the therapeutic responses of immune checkpoint inhibitors.


Assuntos
Dicetopiperazinas , Retrovirus Endógenos , Infecções por HIV , Melanoma , Piridonas , Triazóis , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Lamivudina , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Antirretrovirais/uso terapêutico , Interferons/genética , Infecções por HIV/tratamento farmacológico
2.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445826

RESUMO

Protein self-association is a biologically remarkable event that involves and affects the structural and functional properties of proteins [...].


Assuntos
Proteínas , Ligação Proteica , Multimerização Proteica , Conformação Proteica
3.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674794

RESUMO

Hyperforin (HPF), the main component responsible for the antidepressant action of Hypericum perforatum, displays additional beneficial properties including anti-inflammatory, antimicrobic, and antitumor activities. Among its antitumor effects, HPF activity on melanoma is poorly documented. Melanoma, especially BRAF-mutated melanoma, is still a high-mortality tumor type and the currently available therapies do not provide solutions. We investigated HPF's antimelanoma effectiveness in A375, FO1 and SK-Mel-28 human BRAF-mutated cell lines. Cell viability assays documented that all melanoma cells were affected by low HPF concentrations (EC50% 2-4 µM) in a time-dependent manner. A Br-deoxy-uridine incorporation assay attested a significant reduction of cell proliferation accompanied by decreased expression of cyclin D1 and A2, CDK4 and of the Rb protein phosphorylation, as assessed by immunoblots. In addition, the expression of P21/waf1 and the activated form of P53 were increased in A375 and SK-Mel-28 cells. Furthermore, HPF exerts cytotoxic effects. Apoptosis is induced 24 h after HPF administration, documented by an increase of cleaved-PARP1 and a decrease of both Bcl2 and Bcl-xL expression levels. Autophagy is induced, attested by an augmented LC3B expression and augmentation of the activated form of AMPK. Moreover, HPF lowers GPX4 enzyme expression, suggesting ferroptosis induction. HPF has been reported to activate the TRPC6 Ca++ channel and/or Ca++ and Zn++ release from mitochondria stores, increasing cytosolic Ca++ and Zn++ concentrations. Our data highlighted that HPF affects many cell-signaling pathways, including signaling induced by Ca++, such as FRA1, pcJun and pCREB, the expression or activity of which are increased shortly after treatment. However, the blockage of the TRPC6 Ca++ channel or the use of Ca++ and Zn++ chelators do not hinder HPF cytostatic/cytotoxic activity, suggesting that damages induced in melanoma cells may pass through other pathways. Remarkably, 24 h after HPF treatment, the expression of activated forms of the transcription factors NF-κB P65 subunit and STAT3 are significantly lowered. Several cytosolic (PGM2, LDHA and pPKM2) and mitochondrial (UQCRC1, COX4 and ATP5B) enzymes are downregulated by HPF treatment, suggesting a generalized reduction of vital functions in melanoma cells. In line with these results is the recognized ability of HPF to affect mitochondrial membrane potential by acting as a protonophore. Finally, HPF can hinder both melanoma cell migration and colony formation in soft agar. In conclusion, we provide evidence of the pleiotropic antitumor effects induced by HPF in melanoma cells.


Assuntos
Antineoplásicos , Citostáticos , Melanoma , Humanos , NF-kappa B/metabolismo , Citostáticos/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Canal de Cátion TRPC6 , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Apoptose , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo
4.
Curr Issues Mol Biol ; 44(10): 4790-4802, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36286041

RESUMO

Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17ß-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3' untranslated region (3'UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17ß-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17ß-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17ß-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17ß-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.

5.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35742999

RESUMO

The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Viroses , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Replicação do DNA , DNA Viral , Humanos , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA de Transferência/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Viroses/tratamento farmacológico , Viroses/genética , Replicação Viral
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163058

RESUMO

Melanoma is a highly malignant solid tumor characterized by an elevated growth and propagation rate. Since, often, melanoma treatment cannot prevent recurrences and the appearance of metastasis, new anti-melanoma agents need to be discovered. Salvia miltiorrhiza roots are a source of diterpenoid derivatives, natural compounds with several biological activities, including antiproliferative and anticancer effects. Seven diterpenoid derivatives were purified from S. miltiorrhiza roots and identified by NMR and MS analysis. Tanshinone IIA and cryptotanshinone were detected as the main components of S. miltiorrhiza root ethanol extract. Although their antitumor activity is already known, they have been confirmed to induce a reduction in A375 and MeWo melanoma cell growth. Likewise, salviolone has been shown to impair the viability of melanoma cells without affecting the growth of normal melanocytes. The underlying anticancer activity of salviolone has been investigated and compared to that of cryptotanshinone in A375 cells, showing an increased P21 protein expression in a P53-dependent manner. In that way, salviolone, even more than cryptotanshinone, displays a multitarget effect on cell-cycle-related proteins. Besides, it modulates the phosphorylation level of the signal transducer and activator of transcription (STAT)3. Unexpectedly, salviolone and cryptotanshinone induce sustained activation of the extracellular signal-regulated kinases (ERK)1/2 and the protein kinase B (Akt). However, the blockage of ERK1/2 or Akt activities suggests that kinase activation does not hinder their ability to inhibit A375 cell growth. Finally, salviolone and cryptotanshinone inhibit to a comparable extent some crucial malignancy features of A375 melanoma cells, such as colony formation in soft agar and metalloproteinase-2 activity. In conclusion, it has been shown for the first time that salviolone, harboring a different molecular structure than tanshinone IIA and cryptotanshinone, exhibits a pleiotropic effect against melanoma by hampering cell cycle progression, STAT3 signaling, and malignant phenotype of A375 melanoma cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Diterpenos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/metabolismo , Salvia miltiorrhiza/química , Abietanos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Fenantrenos/farmacologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
7.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163570

RESUMO

Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Melanoma/genética , MicroRNAs/genética , Ribonucleases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Regulação para Cima
8.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443613

RESUMO

Adipogenesis is a complex process in which cell commitment and mitotic clonal expansion (MCE) are in-sequence crucial events leading to terminal adipocyte differentiation. The molecules able to block some key signals in this cascade can hamper adipogenesis becoming promising agents to counteract hyperplasia and hypertrophy of adipose tissue. Mono- and di-caffeoylquinic acid isomers are biologically active polyphenols, displaying in vitro and in vivo antioxidant, hepatoprotective, anti-diabetic and anti-obesity properties. Among these isomers, 3,5-dicaffeoylquinic acid (DCQA) has been reported to inhibit lipid accumulation in adipose cells more successfully than others. Thus, we investigated DCQA effects and molecular mechanisms on 3T3-L1 pre-adipocytes induced to differentiate with a hormonal cocktail (MDI). Oil Red O incorporation assessed that DCQA pre-treatment inhibited lipid accumulation in 3T3-L1 cells induced to differentiate for 10 days. At this time, an increased phosphorylation of both AMP-activated kinase and acetyl-CoA carboxylase, as well as a strong decrease in fatty acid synthase protein level, were registered by immunoblotting, thereby suggesting that DCQA treatment can reduce fatty acid anabolism in 3T3-L1 adipocytes. Furthermore, BrdU incorporation assay, performed 48 h after hormonal stimulation, revealed that DCQA treatment was also able to hinder the 3T3-L1 cell proliferation during the MCE, which is an essential step in the adipogenic process. Thus, we focused our attention on early signals triggered by the differentiation stimuli. In the first hours after hormonal cocktail administration, the activation of ERK1/2 and Akt kinases, or CREB and STAT3 transcription factors, was not affected by DCQA pre-treatment. Whereas 24 h after MDI induction, DCQA pre-treated cells showed increased level of the transcription factor Nrf2, that induced the expression of the antioxidant enzyme heme oxygenase 1 (HO-1). In control samples, the expression level of HO-1 was reduced 24 h after MDI induction in comparison with the higher amount of HO-1 protein found at 2 h. The HO-1 decrease was functional by allowing reactive oxygen species to boost and allowing cell proliferation induction at the beginning of MCE phase. Instead, in DCQA-treated cells the HO-1 expression was maintained at high levels for a further 24 h; in fact, its expression decreased only 48 h after MDI stimulation. The longer period in which HO-1 expression remained high led to a delay of the MCE phase, with a subsequent inhibition of both C/EBP-α expression and adipocyte terminal differentiation. In conclusion, DCQA counteracting an excessive adipose tissue expansion may become an attractive option in obesity treatment.


Assuntos
Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ácido Clorogênico/análogos & derivados , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Mitose/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Ácido Clorogênico/farmacologia , Camundongos
9.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143088

RESUMO

Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of ß-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic ß cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced ß-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Hypericum/química , Inflamação/tratamento farmacológico , Floroglucinol/análogos & derivados , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Floroglucinol/farmacologia , Fitoterapia
10.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708322

RESUMO

Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Catequina/análogos & derivados , Infecções por Coronavirus/tratamento farmacológico , Síndrome da Liberação de Citocina/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Antioxidantes/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Catequina/uso terapêutico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/patologia , Humanos , NF-kappa B/antagonistas & inibidores , Pandemias , Extratos Vegetais/uso terapêutico , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , SARS-CoV-2 , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783660

RESUMO

Melanoma is a lethal tumor because of its severe metastatic potential, and serine/threonine-protein kinase B-raf inhibitors (BRAFi) are used in patients harboring BRAF-mutation. Unfortunately, BRAFi induce resistance. Therefore, we tested the activity of onconase (ONC), a cytotoxic RNase variant, against BRAFi-resistant cells to re-establish the efficacy of the chemotherapy. To do so, an A375 dabrafenib-resistant (A375DR) melanoma cell subpopulation was selected and its behavior compared with that of parental (A375P) cells by crystal violet, 5-Bromo-2'-deoxyuridine incorporation, and cleaved poly(ADP-ribose) polymerase 1 (PARP1) western blot measurements. Then, nuclear p65 Nuclear Factor kappaB (NF-κB) and IκB kinases-α/ß (IKK) phosphorylation levels were measured. Gelatin zymography was performed to evaluate metalloproteinase 2 (MMP2) activity. In addition, assays to measure migration, invasion and soft agar colony formation were performed to examine the tumor cell dissemination propensity. ONC affected the total viability and the proliferation rate of both A375P and A375DR cell subpopulations in a dose-dependent manner and also induced apoptotic cell death. Among its pleiotropic effects, ONC reduced nuclear p65 NF-κB amount and IKK phosphorylation level, as well as MMP2 activity in both cell subpopulations. ONC decreased cell colony formation, migration, and invasion capability. Notably, it induced apoptosis and inhibited colony formation and invasiveness more extensively in A375DR than in A375P cells. In conclusion, ONC successfully counteracts melanoma malignancy especially in BRAFi-resistant cells and could become a tool against melanoma recurrence.


Assuntos
Movimento Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imidazóis/farmacologia , Invasividade Neoplásica/patologia , Oximas/farmacologia , Ribonucleases/farmacologia , Células-Tronco/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Amino Acids ; 50(2): 205-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29204749

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They represent about 4% of the gene products in eukaryotic cells. Although structure-function investigations regarding these enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modification in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition of a phosphate moiety and physiological response.


Assuntos
Enzimas/química , Enzimas/metabolismo , Fosfatos/metabolismo , Fosfato de Piridoxal/metabolismo , Aminoácidos/metabolismo , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Dobramento de Proteína , Relação Estrutura-Atividade
14.
J Nat Prod ; 77(3): 543-9, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24417609

RESUMO

Garcinol (1), a polyisoprenylated benzophenone occurring in Garcinia species, has been reported to exert anti-inflammatory activity in LPS-stimulated macrophages, through inhibition of NF-κB and/or JAK/STAT-1 activation. In order to provide deeper insight into its effects on the cytokine signaling pathway and to clarify the underlying molecular mechanisms, 1 was isolated from the fruits of Garcinia cambogia along with two other polyisoprenylated benzophenones, guttiferones K (2) and guttiferone M (3), differing from each other in their isoprenyl moieties and their positions on the benzophenone core. The affinities of 1-3 for the STAT-1 protein have been evaluated by surface plasmon resonance and molecular docking studies and resulted in KD values in the micromolar range. Consistent with the observed high affinity toward the STAT-1 protein, garcinol and guttiferones K and M were able to modulate cytokine signaling in different cultured cell lines, mainly by inhibiting STAT-1 nuclear transfer and DNA binding, as assessed by an electrophorectic mobility shift assay.


Assuntos
Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Garcinia cambogia/química , Macrófagos/efeitos dos fármacos , Fator de Transcrição STAT1/efeitos dos fármacos , Terpenos/química , Terpenos/farmacologia , Benzofenonas/química , Northern Blotting , Feminino , Frutas/química , Humanos , Lipopolissacarídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Conformação Molecular , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sri Lanka , Terpenos/isolamento & purificação
15.
Biochim Biophys Acta ; 1823(10): 1856-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22705884

RESUMO

Cancer cells exhibit an endogenous constitutive oxidative stress higher than that of normal cells, which renders tumours vulnerable to further reactive oxygen species (ROS) production. Mitochondrial uncoupling protein 2 (UCP2) can mitigate oxidative stress by increasing the influx of protons into the mitochondrial matrix and reducing electron leakage and mitochondrial superoxide generation. Here, we demonstrate that chemical uncouplers or UCP2 over-expression strongly decrease mitochondrial superoxide induction by the anticancer drug gemcitabine (GEM) and protect cancer cells from GEM-induced apoptosis. Moreover, we show that GEM IC(50) values well correlate with the endogenous level of UCP2 mRNA, suggesting a critical role for mitochondrial uncoupling in GEM resistance. Interestingly, GEM treatment stimulates UCP2 mRNA expression suggesting that mitochondrial uncoupling could have a role also in the acquired resistance to GEM. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing strongly enhances GEM-induced mitochondrial superoxide generation and apoptosis, synergistically inhibiting cancer cell proliferation. These events are significantly reduced by the addition of the radical scavenger N-acetyl-l-cysteine or MnSOD over-expression, demonstrating a critical role of the oxidative stress. Normal primary fibroblasts are much less sensitive to GEM/genipin combination. Our results demonstrate for the first time that UCP2 has a role in cancer cell resistance to GEM supporting the development of an anti-cancer therapy based on UCP2 inhibition associated to GEM treatment.


Assuntos
Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Iridoides/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Neoplasias/enzimologia , Neoplasias/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Desacopladores , Proteína Desacopladora 2 , Gencitabina
16.
Apoptosis ; 18(3): 337-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23238993

RESUMO

TP53 mutations compromising p53 transcriptional function occur in more than 50 % of human cancers, including pancreatic adenocarcinoma, and render cancer cells more resistant to conventional therapy. In the last few years, many efforts have been addressed to identify p53-reactivating molecules able to restore the wild-type transcriptionally competent conformation of the mutated proteins. Here, we show that two of these compounds, CP-31398 and RITA, induce cell growth inhibition, apoptosis, and autophagy by activating p53/DNA binding and p53 phosphorylation (Ser15), without affecting the total p53 amount. These effects occur in both wild-type and mutant p53 pancreatic adenocarcinoma cell lines, whereas they are much less pronounced in normal human primary fibroblasts. Furthermore, CP-31398 and RITA regulate the axis SESN1-2/AMPK/mTOR by inducing AMPK phosphorylation on Thr172, which has a crucial role in the autophagic response. The protective role of autophagy in cell growth inhibition by CP-31398 and RITA is supported by the finding that the AMPK inhibitor compound C or the autophagy inhibitors chloroquine or 3-methyladenine sensitize both pancreatic adenocarcinoma cell lines to the apoptotic response induced by p53-reactivating molecules. Our results demonstrate for the first time a survival role for autophagy induced by p53-reactivating molecules, supporting the development of an anti-cancer therapy based on autophagy inhibition associated to p53 activation.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática , Furanos/farmacologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética
17.
J Hum Genet ; 58(12): 812-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24108365

RESUMO

Toll-like receptor-4 (TLR4) is a primary receptor of the innate immune reaction and compelling evidence demonstrates its involvement in the pathogenesis of atherosclerosis and stroke. TLR4 is constitutively expressed on monocytes and endothelial cells; it is highly expressed in atherosclerotic plaques and in peripheral blood of patients after ischemic stroke. Polymorphisms in the promoter region that alter the transcriptional regulation of this gene may represent genetic risk factors involved in the predisposition to atherosclerotic disease. In this study we investigated the effect on TLR4 gene expression of three polymorphisms in the upstream regulatory region at positions -1607T>C/rs10759932, -2026A>G/rs1927914 and -2604G>A/rs10759931 in peripheral blood of atherosclerotic patients. RNA from individuals homozygous for the -2604A allele showed a lower expression of the gene when compared to patients carrying the counterparts GG+GA. Electrophoretic mobility shift assays showed differences in the electrophoretic mobility of the DNA-nuclear protein complexes formed by the G>A variants, suggesting that the two alleles differ in their binding affinity to transcriptional factors.


Assuntos
Aterosclerose/genética , Predisposição Genética para Doença/genética , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Receptor 4 Toll-Like/genética , Idoso , Alelos , Feminino , Homozigoto , Humanos , Masculino
18.
Antioxidants (Basel) ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37507910

RESUMO

Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells.

19.
Int J Biol Macromol ; 191: 560-571, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34563576

RESUMO

Onconase (ONC) is a monomeric amphibian "pancreatic-type" RNase endowed with remarkable anticancer activity. ONC spontaneously forms traces of a dimer (ONC-D) in solution, while larger amounts can be formed when ONC is lyophilized from mildly acidic solutions. Here, we report the crystal structure of ONC-D and analyze its catalytic and antitumor activities in comparison to ONC. ONC-D forms via the three-dimensional swapping of the N-terminal α-helix between two monomers, but it displays a significantly different quaternary structure from that previously modeled [Fagagnini A et al., 2017, Biochem J 474, 3767-81], and based on the crystal structure of the RNase A N-terminal swapped dimer. ONC-D presents a variable quaternary assembly deriving from a variable open interface, while it retains a catalytic activity that is similar to that of ONC. Notably, ONC-D displays antitumor activity against two human melanoma cell lines, although it exerts a slightly lower cytostatic effect than the monomer. The inhibition of melanoma cell proliferation by ONC or ONC-D is associated with the reduction of the expression of the anti-apoptotic B cell lymphoma 2 (Bcl2), as well as of the total expression and phosphorylation of the Signal Transducer and Activator of Transcription (STAT)-3. Phosphorylation is inhibited in both STAT3 Tyr705 and Ser727 key-residues, as well as in its upstream tyrosine-kinase Src. Consequently, both ONC species should exert their anti-cancer action by inhibiting the pro-tumor pleiotropic STAT3 effects deriving either by its phospho-tyrosine activation or by its non-canonical signaling pathways. Both ONC species, indeed, increase the portion of A375 cells undergoing apoptotic cell death. This study expands the variety of RNase domain-swapped dimeric structures, underlining the unpredictability of the open interface arrangement upon domain swapping. Structural data also offer valuable insights to analyze the differences in the measured ONC or ONC-D biological activities.


Assuntos
Antineoplásicos/química , Domínio Catalítico , Melanoma/metabolismo , Ribonucleases/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
Life (Basel) ; 11(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669993

RESUMO

Upon oligomerization, RNase A can acquire important properties, such as cytotoxicity against leukemic cells. When lyophilized from 40% acetic acid solutions, the enzyme self-associates through the so-called three-dimensional domain swapping (3D-DS) mechanism involving both N- and/or C-terminals. The same species are formed if the enzyme is subjected to thermal incubation in various solvents, especially in 40% ethanol. We evaluated here if significant structural modifications might occur in RNase A N- or C-swapped dimers and/or in the residual monomer(s), as a function of the oligomerization protocol applied. We detected that the monomer activity vs. ss-RNA was partly affected by both protocols, although the protein does not suffer spectroscopic alterations. Instead, the two N-swapped dimers showed differences in the fluorescence emission spectra but almost identical enzymatic activities, while the C-swapped dimers displayed slightly different activities vs. both ss- or ds-RNA substrates together with not negligible fluorescence emission alterations within each other. Besides these results, we also discuss the reasons justifying the different relative enzymatic activities displayed by the N-dimers and C-dimers. Last, similarly with data previously registered in a mouse model, we found that both dimeric species significantly decrease human melanoma A375 cell viability, while only N-dimers reduce human melanoma MeWo cell growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA