RESUMO
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Androgênios/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Glioma is the most common and lethal type of brain tumor, and it is characterized by unfavorable prognosis and high recurrence rates. The reprogramming of energy metabolism and an immunosuppressive tumor microenvironment (TME) are two hallmarks of tumors. Complex and dynamic interactions between neoplastic cells and the surrounding microenvironment can generate an immunosuppressive TME, which can accelerate the malignant progression of glioma. Therefore, it is crucial to explore associations between energy metabolism and the immunosuppressive TME and to identify new biomarkers for glioma prognosis. METHODS: In our work, we analyzed the co-expression relationship between glycolytic genes and immune checkpoints based on the transcriptomic data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) and found the correlation between HK3 expression and glioma tumor immune status. To investigate the biological role of HK3 in glioma, we performed bioinformatics analysis and established a mouse glioblastoma (GBM) xenograft model. RESULTS: Our study showed that HK3 significantly stimulated immune cell infiltration into the glioma TME. Tissue samples with higher HK3 expressive level showed increasing levels of immune cells infiltration, including M2 macrophages, neutrophils, and various subtypes of activated memory CD4+ T cells. Furthermore, HK3 expression was significantly increasing along with the elevated tumor grade, had a higher level in the mesenchymal subtype compared with those in other subtypes of GBM and could independently predict poor outcomes of GBM patients. CONCLUSION: The present work mainly concentrated on the biological role of HK3 in glioma and offered a novel insight of HK3 regulating the activation of immune cells in the glioma microenvironment. These findings could provide a new theoretical evidence for understanding the metabolic molecular within the glioma microenvironment and identifying new therapeutic targets.
RESUMO
BACKGROUND: N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A) are the main RNA methylation modifications involved in the progression of cancer. However, it is still unclear whether RNA methylation-related long noncoding RNAs (lncRNAs) affect the prognosis of glioma. METHODS: We summarized 32 m6A/m5C/m1A-related genes and downloaded RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify differentially expressed (DE-) RNA methylation-related lncRNAs in order to construct a prognostic signature of glioma and in order to determine their correlation with immune function, immune therapy and drug sensitivity. In vitro and in vivo assays were performed to elucidate the effects of RNA methylation-related lncRNAs on glioma. RESULTS: A total of ten RNA methylation-related lncRNAs were used to construct a survival and prognosis signature, which had good independent prediction ability for patients. It was found that the high-risk group had worse overall survival (OS) than the low-risk group in all cohorts. In addition, the risk group informed the immune function, immunotherapy response and drug sensitivity of patients with glioma in different subgroups. Knockdown of RP11-98I9.4 and RP11-752G15.8 induced a more invasive phenotype, accelerated cell growth and apparent resistance to temozolomide (TMZ) both in vitro and in vivo. We observed significantly elevated global RNA m5C and m6A levels in glioma cells. CONCLUSION: Our study determined the prognostic implication of RNA methylation-related lncRNAs in gliomas, established an RNA methylation-related lncRNA prognostic model, and elucidated that RP11-98I9.4 and RP11-752G15.8 could suppress glioma proliferation, migration and TMZ resistance. In the future, these RNA methylation-related lncRNAs may become a new choice for immunotherapy of glioma.
RESUMO
Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.
Assuntos
Portadores de Fármacos , Pontos Quânticos , Portadores de Fármacos/toxicidade , Microesferas , Pontos Quânticos/toxicidade , Durapatita/toxicidade , Concentração de Íons de HidrogênioRESUMO
ω-Transaminases (ω-TAs) show considerable potential for the synthesis of chiral amines. However, their low catalytic efficiency towards bulky substrates limits their application, and complicated catalytic mechanisms prevent precise enzyme design. Herein, we address this challenge using a mechanism-guided computational enzyme design strategy by reprograming the transition and ground states in key reaction steps. The common features among the three high-energy-barrier steps responsible for the low catalytic efficiency were revealed using quantum mechanics (QM). Five key residues were simultaneously tailored to stabilize the rate-limiting transition state with the aid of the Rosetta design. The 14 top-ranked variants showed 16.9-143-fold improved catalytic activity. The catalytic efficiency of the best variant, M9 (Q25F/M60W/W64F/I266A), was significantly increased, with a 1660-fold increase in kcat /Km and a 1.5-26.8-fold increase in turnover number (TON) towards various indanone derivatives.
Assuntos
Aminas , Transaminases , Transaminases/química , Aminas/química , CatáliseRESUMO
The Drug Response Gene Expression Associated Map, also referred as "DREAM" ( http://bio-big-data.cn:8080/DREAM ), is a manually curated database of experimentally supported protein-coding RNAs and drugs associations in human cancers. The current version of the DREAM documents 3048 entries about scientific literatures supported drug sensitivity or drug intervention related protein-coding RNAs from PubMed database and 195 high-throughput microarray data about drug sensitivity or drug intervention related protein-coding RNAs data from GEO database. Each entry in DREAM database contains detailed information on protein-coding RNA, drug, cancer, and other information including title, PubMed ID, journal, publish time. The DREAM database also provides some data visualization and online analysis services such as volcano plot, GO/KEGG enrichment function analysis, and novel drug discovery analysis. We hope the DREAM database should serve as a valuable resource for clinical practice and basic research, which could help researchers better understand the effects of protein-coding RNAs on drug response in human cancers.
Assuntos
Bases de Dados Genéticas , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Fases de Leitura Aberta , RNA Mensageiro/genética , Descoberta de Drogas/métodos , HumanosRESUMO
BACKGROUND: Prostate cancer (Pca) is the most common cancer type among males worldwide. Dysregulation of Ca2+ signaling plays important roles during Pca progression. However, there is lack of information about the role of endolysosomal Ca2+ -permeable channels in Pca progression. METHODS: The expression pattern of MCOLN2 was studied by immunohistochemistry and western blot. Cell viability assay, transwell assay and in vivo tumorigenesis were performed to evaluate the functional role of MCOLN2. Downstream targets of MCOLN2 were investigated by cytokine array, enzyme-linked immunosorbent assay, Ca2+ release experiments and luciferase reporter assays. RESULTS: We report that MCOLN2 expression is significantly elevated in Pca tissues, and associated with poor prognosis. Overexpression of MCOLN2 promoted Pca cells proliferation, migration and invasion. Importantly, knockdown of MCOLN2 inhibited Pca xenograft tumor growth and bone lesion development in vivo. In addition, MCOLN2 promoted the production and release of IL-1ß. Moreover, luciferase reporter assay and western blot revealed that MCOLN2 promoted Pca development by regulating the IL-1ß/NF-κB pathway. CONCLUSION: In summary, MCOLN2 is crucially involved in Pca progression. Mechanistically, MCOLN2 regulates Pca progression via IL-1ß/NF-κB pathway. Our study highlights an intriguing possibility of targeting MCOLN2 as potential therapeutic strategy in Pca treatment.
Assuntos
Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Regulação para Cima , Animais , Sinalização do Cálcio , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Células PC-3 , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismoRESUMO
A brain organoid is a self-organizing three-dimensional tissue derived from human embryonic stem cells or pluripotent stem cells and is able to simulate the architecture and functionality of the human brain. Brain organoid generation methods are abundant and continue to improve, and now, an in vivo vascularized brain organoid has been encouragingly reported. The combination of brain organoids with immune-staining and single-cell sequencing technology facilitates our understanding of brain organoids, including the structural organization and the diversity of cell types. Recent publications have reported that brain organoids can mimic the dynamic spatiotemporal process of early brain development, model various human brain disorders, and serve as an effective preclinical platform to test and guide personalized treatment. In this review, we introduce the current state of brain organoid differentiation strategies, summarize current progress and applications in the medical domain, and discuss the challenges and prospects of this promising technology.
Assuntos
Encéfalo/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , HumanosRESUMO
Conductive microwrinkles present a superior performance in ultrasensitive sensing, smart controlling, as well as energy conservation because of their unique structures. These wrinkles are usually prepared by the deposition of a thin conductive stiff layer on a soft substrate under a certain strain. However, traditional conductive materials may encounter some deficiencies, such as fragility or poor dispersity, in any solvent. To promote the applicability of conductive microwrinkles, here, we adopt a new two-dimensional nanomaterial Ti3C2Tx MXene as the conductive stiff layer to construct the microwrinkles. By combining the spraying and inflating techniques, the hierarchical complex and delicate Ti3C2Tx-polyurethane (Ti3C2Tx-PU) microwrinkles have become facilely available. The characteristic wavelength and amplitude of the microwrinkles could be easily adjusted by altering the inflating height of the PU film or the spraying volume of the Ti3C2Tx solution. Because the as-prepared Ti3C2Tx wrinkles could sensitively generate deformation inducing a resistance change under a force, these structures are also assembled to detect the applied force. The Ti3C2Tx force sensors showed quick response to a tiny force and stable reliability over hundreds of cycles, which hold a promising potential to monitor or employ the microforce.
RESUMO
Mutualistic and dynamic communication between tumour cells and the surrounding microenvironment accelerates the initiation, progression, chemoresistance and immune evasion of glioblastoma (GBM). However, the immunosuppressive mechanisms of GBM has not been thoroughly elucidated to date. We enrolled six microenvironmental signatures to identify glioma microenvironmental genes. The functional enrichment analysis such as ssGSEA, ESTIMATE algorithm, Gene Ontology, Pathway analysis is conducted to discover the potential function of microenvironmental genes. In vivo and in vitro experiments are used to verify the immunologic function of LGALS1 in GBM. We screen eight glioma microenvironmental genes from glioma databases, and discover a key immunosuppressive gene (LGALS1 encoding Galectin-1) exhibiting obviously prognostic significance among glioma microenvironmental genes. Gliomas with different LGALS1 expression have specific genomic variation spectrums. Immunosuppression is a predominate characteristic in GBMs with high expression of LGALS1. Knockdown of LGALS1 remodels the GBM immunosuppressive microenvironment by down regulating M2 macrophages and myeloid-derived suppressor cells (MDSCs), and inhibiting immunosuppressive cytokines. Our results thus implied an important role of microenvironmental regulation in glioma malignancy and provided evidences of LGALS1 contributing to immunosuppressive environment in glioma and that targeting LGALS1 could remodel immunosuppressive microenvironment of glioma.
Assuntos
Citocinas/metabolismo , Galectina 1/genética , Glioblastoma/imunologia , Macrófagos/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Glioblastoma/genética , Humanos , Fenômenos Imunogenéticos , Terapia de Imunossupressão , Camundongos , Transplante de Neoplasias , Prognóstico , Software , Microambiente Tumoral , Regulação para CimaRESUMO
Colorectal cancer (CRC) is the third most common cancer worldwide, with more than 1.3 million new cases and 690 000 deaths each year. In China, the incidence of CRC has increased dramatically due to dietary and lifestyle changes, to become the fifth leading cause of cancer-related death. Here, we performed whole-exome sequencing in 50 rectal cancer cases among the Chinese population as part of the International Cancer Genome Consortium research project. Frequently mutated genes and enriched pathways were identified. Moreover, a previously unreported gene, PCDHB3, was found frequently mutated in 5.19% cases. Additionally, PCDHB3 expression was found decreased in 81.6% of CRC tissues and all eight CRC cell lines tested. Low expression and cytoplasmic localization of PCDHB3 predict poor prognosis in advanced CRC. Copy number decrease and/or CpG island hypermethylation contributes to the pervasive decreased expression of PCDHB3. PCDHB3 inhibits CRC cell proliferation, migration, and epithelial-mesenchymal transition. The tumor-suppressive effects of PCDHB3 are partially due to inhibition of NF-κB transcriptional activity through K63 deubiquitination of p50 at lysine 244/252, which increases the binding affinity of inactive p50 homodimer to κB DNA, resulting in competitive inhibition of the transcription of NF-κB target genes by p65 dimers. Our study identified PCDHB3 as a novel tumor suppressor in CRC via inhibition of the NF-κB pathway, and its expression and localization may serve as prognostic markers for advanced CRC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Biomarcadores Tumorais/genética , Caderinas/genética , Neoplasias Colorretais/genética , Sequenciamento do Exoma , Inativação Gênica , Genes Supressores de Tumor , Mutação , Adulto , Idoso , Animais , Povo Asiático/genética , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , China , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ilhas de CpG , Metilação de DNA , Regulação para Baixo , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo , ProtocaderinasRESUMO
Gliomas are characterized by a malignant phenotype with proliferation, cell cycle arrest and invasion. To explore the biological consequences of epigenetically regulated miRNAs, we performed a microarray-based screening (whose expression was affected by 5-AZA treatment) followed by bisulfite sequencing validation. We found that miR-134 as an epigenetically regulated suppressor gene with prognostic value in gliomas. MicroRNA-134 was downregulated in high-grade gliomas, especially in GBM samples. Functional studies in vitro and in vivo in mouse models showed that overexpression of miR-134 was sufficient to reduce cell cycle arrest, cell proliferation and invasion. Target analysis and functional assays correlated the malignant phenotype with miR-134 target gene KRAS, an established upstream regulator of ERK and AKT pathways. Overall, our results highlighted a role for miR-134 in explaining the malignant phenotype of gliomas and suggested its relevance as a target to develop for early diagnostics and therapy.
Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Glioma/patologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Neoplasias Encefálicas/genética , Inativação Gênica , Glioma/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , FenótipoRESUMO
17α-Ethynylestradiol (EE2) in natural waters may cause adverse effects on organisms due to its high estrogenic potency. Laboratory studies were performed to study the effects of a local humic acid (LHA), fulvic acid (LFA) and Aldrich humic acid (AHA) on the photochemical behavior and estrogenic potency of EE2. Here photolytic experiments demonstrated that pure aqueous EE2 could undergo direct and self-sensitized photodegradation at a global rate of 0.0068hr-1. Photodegradation rate of EE2 in 5.0mg/L dissolved humic substances (DHS) was determined to be 0.0274, 0.0296 and 0.0254hr-1 for LHA, LFA and AHA, respectively. Reactive oxygen species (ROS) and triplet dissolved humic substances (3DHS*) scavenging experiments indicated that the promotion effect of DHS on EE2 photodegradation was mainly aroused by the reactions of HO (35%-50%), 1O2 (<10%) and 3DHS* (22%-34%). However, the photodegradation of EE2 could also be inhibited when DHS exceeded the threshold of 10mg/L. Three hydroxylation products of EE2 were identified using GC-MS and their formation pathways were also proposed. In vitro estrogenicity tests showed that EE2 was transformed into chemicals without estrogenic potency. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens in sunlit natural waters.
Assuntos
Etinilestradiol/química , Substâncias Húmicas , Processos Fotoquímicos , Poluentes Químicos da Água/química , Cinética , Fotólise , Luz SolarRESUMO
Gliomas are the most common primary intracranial malignant tumors in adults. Surgical resection followed by optional radiotherapy and chemotherapy is the current standard therapy for glioma patients. Vimentin, a protein of intermediate filament family, could maintain the cellular integrity and participate in several cell signal pathways to modulate the motility and invasion of cancer cells. The purpose of the present research was to identify the relationship between vimentin expression and clinical characteristics and detect the prognostic and predictive ability of vimentin in patients with glioma. To determine the expression of vimentin in glioma tissues, paraffin-embedded blocks from glioma patients by surgical resection were obtained and evaluated by immunohistochemistry. To further investigate the association of vimentin expression with survival, we employed mRNA expression of vimentin genes from the Chinese Glioma Genome Atlas (CGGA) and the GSE 16011 dataset. Kaplan-Meier analysis and Cox regression model were used to statistical analysis. We detected positive vimentin straining in 84 % of high-grade compared to 47 % in low-grade glioma patients. Additionally, vimentin mRNA expression was correlated with glioma grade in both CGGA and GSE16011 dataset. Patients with low vimentin expression have longer survival than high expression. In multivariate analysis, vimentin was an independent significant prognostic factor for high-grade glioma patients. We also identified that glioblastoma patients with low vimentin expression had a better response to temozolomide therapy. Vimentin expression has a significant association with tumor grade and overall survival of high-grade glioma patients. Low vimentin expression may benefit from temozolomide therapy.
Assuntos
Biomarcadores Tumorais/metabolismo , Dacarbazina/análogos & derivados , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Vimentina/metabolismo , Adulto , Antineoplásicos Alquilantes/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Dacarbazina/uso terapêutico , Feminino , Seguimentos , Glioma/tratamento farmacológico , Humanos , Técnicas Imunoenzimáticas , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Temozolomida , Vimentina/genéticaRESUMO
BACKGROUND: OTUB1 (OTU deubiquitinase, ubiquitin aldehyde binding 1) is a deubiquitinating enzyme (DUB) that belongs to the OTU (ovarian tumor) superfamily. The aim of this study was to clarify the role of OTUB1 in colorectal cancer (CRC) and to identify the mechanism underlying its function. METHODS: Two hundred and sixty CRC samples were subjected to association analysis of OTUB1 expression and clinicopathological variables using immunohistochemical (IHC) staining. Overexpression of OTUB1 was achieved in SW480 and DLD-1 cells, and downregulation of OTUB1 was employed in SW620 cells. Then, migration and invasion assays were performed, and markers of the epithelial-mesenchymal transition (EMT) were analyzed. In addition, hepatic metastasis models in mice were used to validate the function of OTUB1 in vivo. RESULTS: OTUB1 was overexpressed in CRC tissues, and the expression level of OTUB1 was associated with metastasis. A high expression level of OTUB1 was also associated with poor survival, and OTUB1 served as an independent prognostic factor in multivariate analysis. OTUB1 also promoted the metastasis of CRC cell lines in vitro and in vivo by regulating EMT. CONCLUSIONS: OTUB1 promotes CRC metastasis by facilitating EMT and acts as a potential distant metastasis marker and prognostic factor in CRC. Targeting OTUB1 may be helpful for the treatment of CRC.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Cisteína Endopeptidases/genética , Metástase Neoplásica/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Enzimas Desubiquitinantes , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , PrognósticoRESUMO
BACKGROUND & AIMS: Altered functions of microRNAs (miRNAs) have been associated with colorectal cancer (CRC). miR-212 is transcribed from a stable intron of a non-protein coding gene, and is reportedly down-regulated in different tumor types. We investigated the role of miR-212 in colorectal carcinogenesis and progression. METHODS: We analyzed the expression of miR-212 by real-time polymerase chain reaction (PCR) analysis of colorectal cell lines and 180 paired tumor samples and surrounding healthy tissue. We overexpressed and knocked down miR-212 in CRC cell lines and assessed the in vitro effects. We also studied the effects of miR-212 overexpression on metastasis of tumors grown from HCT116 cells in nude mice. RESULTS: Overexpression of miR-212 inhibited CRC cell migration and invasion in vitro and formation of intrahepatic and pulmonary metastasis in vivo. We identified manganese superoxide dismutase (MnSOD) messenger RNA as a direct target of miR-212, and observed an inverse correlation between the level of miR-212 and MnSOD protein in colorectal tumor samples. MnSOD was required for down-regulation of epithelial markers and up-regulation of mesenchymal markers in CRC cells, indicating that it promoted the epithelial-mesenchymal transition. Overexpression of miR-212 reduced the levels of MnSOD to block the epithelial-mesenchymal transition process. Loss of heterozygosity and promoter hypermethylation each contributed to the down-regulation of miR-212. Reduced levels of miR-212 were associated with a more aggressive tumor phenotype and short disease-free survival times of patients (P = .0045; overall survival, P = .0015). CONCLUSIONS: miR-212 is down-regulated in human CRC tissues via genetic and epigenetic mechanisms. miR-212 might prevent tumor progression by targeting MnSOD messenger RNA; reduction of miR-212 could be a prognostic marker for patients with CRC. miR-212 and MnSOD might also be therapeutic targets for cancer.
Assuntos
Neoplasias Colorretais/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Superóxido Dismutase/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Células HCT116 , Células HT29 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Transplante de Neoplasias , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW: In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW: In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
RESUMO
Glioblastoma (GBM) presents a daunting challenge due to its resistance to temozolomide (TMZ), a hurdle exacerbated by the proneural-to-mesenchymal transition (PMT) from a proneural (PN) to a mesenchymal (MES) phenotype. TAGLN2 is prominently expressed in GBM, particularly in the MES subtype compared to low-grade glioma (LGG) and the PN subtype. Our research reveals TAGLN2's involvement in PMT and TMZ resistance through a series of in vitro and in vivo experiments. TAGLN2 knockdown can restrain proliferation and invasion, trigger DNA damage and apoptosis, and heighten TMZ sensitivity in GBM cells. Conversely, elevating TAGLN2 levels amplifies resistance to TMZ in cellular and intracranial xenograft mouse models. We demonstrate the interaction relationship between TAGLN2 and ERK1/2 through co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrometry analysis. Knockdown of TAGLN2 results in a decrease in the expression of p-ERK1/2, whereas overexpression of TAGLN2 leads to an increase in p-ERK1/2 expression within the nucleus. Subsequently, the regulatory role of TAGLN2 in the expression and control of MGMT has been demonstrated. Finally, the regulation of TAGLN2 by NF-κB has been validated through chromatin immunoprecipitation and ChIP-PCR assays. In conclusion, our results confirm that TAGLN2 exerts its biological functions by interacting with the ERK/MGMT axis and being regulated by NF-κB, thereby facilitating the acquisition of promoting PMT and increased resistance to TMZ therapy in glioblastoma. These results provide valuable insights for the advancement of targeted therapeutic approaches to overcome TMZ resistance in clinical treatments.
Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Camundongos Nus , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Temozolomide (TMZ) resistance is one of the major reasons for poor prognosis in patients with glioblastoma (GBM). Long noncoding RNAs (lncRNAs) are involved in multiple biological processes, including TMZ resistance. Linc00942 is a potential regulator of TMZ sensitivity in GBM cells is shown previously. However, the underlying mechanism of TMZ resistance induced by Linc00942 is unknown. In this study, the sequence of Linc00942 by rapid amplification of cDNA ends assay in TMZ-resistant GBM cells is identified and confirmed that Linc00942 contributes to self-renewal and TMZ resistance in GBM cells. Chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) and followed by Western blotting (ChIRP-WB) assays shows that Linc00492 interacted with TPI1 and PKM2, subsequently promoting their phosphorylation, dimerization, and nuclear translocation. The interaction of Linc00942 with TPI1 and PKM2 leads to increased acetylation of H3K4 and activation of the STAT3/P300 axis, resulting in the marked transcriptional activation of SOX9. Moreover, the knockdown of SOX9 reversed TMZ resistance induced by Linc00492 both in vitro and in vivo. In summary, Linc00942 strongly promotes SOX9 expression by interacting with TPI1 and PKM2 is found, thereby driving self-renewal and TMZ resistance in GBM cells. These findings suggest potential combined therapeutic strategies to overcome TMZ resistance in patients with GBM.
RESUMO
Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.