Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 35(31): 4122-31, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-26686088

RESUMO

Physical activity has been shown to suppress tumor initiation and progression. The neurotransmitter dopamine (DA) is closely related to movement and exhibits antitumor properties. However, whether the suppressive effects of physical activity on tumors was mediated by the nervous system via increased DA level remains unknowns. Here we show that regular moderate swimming (8 min/day, 9 weeks) raised DA levels in the prefrontal cortex, serum and tumor tissue, suppressed growth, reduced lung metastasis of transplanted liver cancer, and prolonged survival in a C57BL/6 mouse model, while overload swimming (16 and 32 min/day, 9 weeks) had the opposite effect. In nude mice that were orthotopically implanted with human liver cancer cell lines, DA treatment significantly suppressed growth and lung metastasis by acting on the D2 receptor (DR2). Furthermore, DR2 blockade attenuated the suppressive effect of moderate swimming on liver cancer. Both moderate swimming and DA treatment suppressed the transforming growth factor-beta (TGF-ß1)-induced epithelial-mesenchymal transition of transplanted liver cancer cells. At the molecular level, DR2 signaling inhibited extracellular signal-regulated kinase phosphorylation and expression of TGF-ß1 in vitro. Together, these findings demonstrated a novel mechanism by which the moderate exercise suppressed liver cancer through boosting DR2 activity, while overload exercise had the opposite effect, highlighting the possible importance of the dopaminergic system in tumor growth and metastasis of liver cancer.


Assuntos
Neoplasias Hepáticas Experimentais/patologia , Receptores de Dopamina D2/fisiologia , Natação , Animais , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Tempo , Fator de Crescimento Transformador beta1/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA