Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38185996

RESUMO

In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mapeamento Encefálico , Ferro/metabolismo , Imageamento por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Placa Amiloide/metabolismo , Encéfalo/metabolismo
2.
Neuroimage ; 285: 120478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036152

RESUMO

Brain regions accumulate different amounts of iron with age, with older adults having higher iron in the basal ganglia (globus pallidus, putamen, caudate) relative to the hippocampus. This has important implications for functional magnetic resonance imaging (fMRI) studies in aging as the presence of iron may influence both neuronal functioning as well as the measured fMRI (BOLD) signal, and these effects will vary across age groups and brain regions. To test this hypothesis, the current study examined the effect of iron on age group differences in task-related activity within each basal nuclei and the hippocampus. Twenty-eight younger and 22 older adults completed an associative learning task during fMRI acquisition. Iron content (QSM, R2*) was estimated from a multi-echo gradient echo sequence. As previously reported, older adults learned significantly less than younger adults and age group differences in iron content were largest in the basal ganglia (putamen, caudate). In the hippocampus (early task stage) and globus pallidus (late task stage), older adults had significantly higher learning-related activity than younger adults both before and after controlling for iron. In the putamen (late task stage), however, younger adults had significantly higher learning-related activity than older adults that was only seen after controlling for iron. These findings support the notion that age-related differences in iron influence both neuronal functioning and the measured fMRI signal in select basal nuclei. Moreover, previous fMRI studies in aging populations may have under-reported age group differences in task-related activity by not accounting for iron within these regions.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Gânglios da Base/diagnóstico por imagem , Envelhecimento/fisiologia
3.
Neuroimage ; 282: 120401, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802405

RESUMO

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.


Assuntos
Envelhecimento Saudável , Doenças Neurodegenerativas , Humanos , Idoso , Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Cognição , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo
4.
Neuroimage ; 275: 120191, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244322

RESUMO

Healthy neurocognitive aging has been associated with the microstructural degradation of white matter pathways that connect distributed gray matter regions, assessed by diffusion-weighted imaging (DWI). However, the relatively low spatial resolution of standard DWI has limited the examination of age-related differences in the properties of smaller, tightly curved white matter fibers, as well as the relatively more complex microstructure of gray matter. Here, we capitalize on high-resolution multi-shot DWI, which allows spatial resolutions < 1 mm3 to be achieved on clinical 3T MRI scanners. We assessed whether traditional diffusion tensor-based measures of gray matter microstructure and graph theoretical measures of white matter structural connectivity assessed by standard (1.5 mm3 voxels, 3.375 µl volume) and high-resolution (1 mm3 voxels, 1µl volume) DWI were differentially related to age and cognitive performance in 61 healthy adults 18-78 years of age. Cognitive performance was assessed using an extensive battery comprising 12 separate tests of fluid (speed-dependent) cognition. Results indicated that the high-resolution data had larger correlations between age and gray matter mean diffusivity, but smaller correlations between age and structural connectivity. Moreover, parallel mediation models including both standard and high-resolution measures revealed that only the high-resolution measures mediated age-related differences in fluid cognition. These results lay the groundwork for future studies planning to apply high-resolution DWI methodology to further assess the mechanisms of both healthy aging and cognitive impairment.


Assuntos
Envelhecimento Saudável , Substância Branca , Adulto , Humanos , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Cognição , Encéfalo/diagnóstico por imagem
5.
Cogn Affect Behav Neurosci ; 23(1): 114-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36163584

RESUMO

The ability to learn associations between events is critical for everyday functioning (e.g., decision making, social interactions) and has been attributed to structural differences in white matter tracts connecting cortical regions to the hippocampus (e.g., fornix) and striatum (e.g., internal capsule) in younger-old adults (ages 65-85 years). However, evidence of associative learning has not been assessed within oldest-old adults (ages 90+ years), despite its relevance to other extensively characterized cognitive abilities in the oldest-old and the relatively large effect of advanced age on the microstructural composition of these white matter tracts. We acquired multicompartment diffusion-weighted magnetic resonance imaging data from 22 oldest-old adults without dementia (mean age = 92.91 ± 1.44 years) who also completed an associative learning task. Behavioral results revealed significantly better associative learning performance during later task stages, as expected if participants incidentally learned the cue-cue-target associations for frequently occurring event triplets. Moreover, better learning performance was significantly predicted by better microstructure of cortico-striatal white matter (posterior limb of the internal capsule). Finding that associative learning abilities in the 10th decade of life are supported by better microstructure of white matter tracts connecting the cortex to the striatum underscores their importance to learning performance across the entire lifespan.


Assuntos
Substância Branca , Adulto , Humanos , Idoso de 80 Anos ou mais , Idoso , Substância Branca/diagnóstico por imagem , Cognição , Corpo Estriado , Hipocampo
6.
Brain Struct Funct ; 229(7): 1533-1559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38856933

RESUMO

Previous magnetic resonance imaging (MRI) research suggests that aging is associated with a decrease in the functional interconnections within and between groups of locally organized brain regions (modules). Further, this age-related decrease in the segregation of modules appears to be more pronounced for a task, relative to a resting state, reflecting the integration of functional modules and attentional allocation necessary to support task performance. Here, using graph-theoretical analyses, we investigated age-related differences in a whole-brain measure of module connectivity, system segregation, for 68 healthy, community-dwelling individuals 18-78 years of age. We obtained resting-state, task-related (visual search), and structural (diffusion-weighted) MRI data. Using a parcellation of modules derived from the participants' resting-state functional MRI data, we demonstrated that the decrease in system segregation from rest to task (i.e., reconfiguration) increased with age, suggesting an age-related increase in the integration of modules required by the attentional demands of visual search. Structural system segregation increased with age, reflecting weaker connectivity both within and between modules. Functional and structural system segregation had qualitatively different influences on age-related decline in visual search performance. Functional system segregation (and reconfiguration) influenced age-related decline in the rate of visual evidence accumulation (drift rate), whereas structural system segregation contributed to age-related slowing of encoding and response processes (nondecision time). The age-related differences in the functional system segregation measures, however, were relatively independent of those associated with structural connectivity.


Assuntos
Envelhecimento , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Descanso , Humanos , Pessoa de Meia-Idade , Adulto , Idoso , Masculino , Feminino , Envelhecimento/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Adolescente , Descanso/fisiologia , Vias Neurais/fisiologia , Atenção/fisiologia , Percepção Visual/fisiologia
7.
Atten Percept Psychophys ; 85(3): 749-768, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36627473

RESUMO

Age-related decline in visual search performance has been associated with different patterns of activation in frontoparietal regions using functional magnetic resonance imaging (fMRI), but whether these age-related effects represent specific influences of target and distractor processing is unclear. Therefore, we acquired event-related fMRI data from 68 healthy, community-dwelling adults ages 18-78 years, during both conjunction (T/F target among rotated Ts and Fs) and feature (T/F target among Os) search. Some displays contained a color singleton that could correspond to either the target or a distractor. A diffusion decision analysis indicated age-related increases in sensorimotor response time across all task conditions, but an age-related decrease in the rate of evidence accumulation (drift rate) was specific to conjunction search. Moreover, the color singleton facilitated search performance when occurring as a target and disrupted performance when occurring as a distractor, but only during conjunction search, and these effects were independent of age. The fMRI data indicated that decreased search efficiency for conjunction relative to feature search was evident as widespread frontoparietal activation. Activation within the left insula mediated the age-related decrease in drift rate for conjunction search, whereas this relation in the FEF and parietal cortex was significant only for individuals younger than 30 or 44 years, respectively. Finally, distractor singletons were associated with significant parietal activation, whereas target singletons were associated with significant frontoparietal deactivation, and this latter effect increased with adult age. Age-related differences in frontoparietal activation therefore reflect both the overall efficiency of search and the enhancement from salient targets.


Assuntos
Atenção , Percepção Visual , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Atenção/fisiologia , Percepção Visual/fisiologia , Tempo de Reação/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética
8.
Behav Brain Res ; 416: 113570, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499941

RESUMO

Healthy aging is accompanied by declines in the ability to learn associations between events, even when their relationship cannot be described. Previous functional magnetic resonance imaging (fMRI) studies have attributed these implicit associative learning (IAL) deficits to differential engagement of the hippocampus and basal ganglia in older relative to younger adults in early and late stages of the task, respectively. However, these task stages have been confounded with age group differences in learning performance that emerge later and to a lesser degree in older adults. To disentangle the effects of task stage from learning stage (i.e., when there is significant evidence of learning) on age group differences in the neural substrates of IAL, we acquired fMRI data while 28 younger (20.8 ± 2.3 years) and 22 older (73.6 ± 6.8 years) healthy adults completed the Triplets Learning Task, in which the location of two cues predicted the location of a target with high (HF) or low (LF) frequency. When matched for task stage, results revealed worse learning performance and increased IAL-related activity in the hippocampus during the early stage and in the globus pallidum during the late stage in older relative to younger adults. However, when matched for learning stage, there were no significant age group differences in learning performance or IAL-related activity. Thus, although learning emerges later for older adults, they are engaging similar brain regions as younger adults when learning the associations, suggesting that previous reports of age group differences reflect effects of age on task stage, but not learning stage.


Assuntos
Envelhecimento/fisiologia , Aprendizagem por Associação/fisiologia , Hipocampo/fisiologia , Análise e Desempenho de Tarefas , Adulto , Idoso , Encéfalo , Sinais (Psicologia) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
9.
Neurosci Biobehav Rev ; 135: 104594, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227712

RESUMO

Magnetic resonance imaging (MRI) studies of brain and neurocognitive aging rarely include oldest-old adults (ages 80 +). But predictions of neurocognitive aging theories derived from MRI findings in younger-old adults (ages ~55-80) may not generalize into advanced age, particularly given the increased prevalence of cognitive impairment/dementia in the oldest-old. Here, we reviewed the MRI literature in oldest-old adults and interpreted findings within the context of regional variation, compensation, brain maintenance, and reserve theories. Structural MRI studies revealed regional variation in brain aging as larger age effects on medial temporal and posterior regions for oldest-old than younger-old adults. They also revealed that brain maintenance explained preserved cognitive functioning into the tenth decade of life. Very few functional MRI studies examined compensatory activity in oldest-old adults who perform as well as younger groups, although there was evidence that higher brain reserve in oldest-old adults may mediate effects of brain aging on cognition. Despite some continuity, different cognitive and neural profiles across the older adult lifespan should be addressed in modern neurocognitive aging theories.


Assuntos
Reserva Cognitiva , Longevidade , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética
10.
Sci Rep ; 12(1): 20755, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456602

RESUMO

Preadolescence is a period of increased vulnerability for anxiety, especially among Latina girls. Reduced microstructure (fractional anisotropy; FA) of white matter tracts between limbic and prefrontal regions may underlie regulatory impairments in anxiety. However, developmental research on the association between anxiety and white matter microstructure is mixed, possibly due to interactive influences with puberty. In a sample of 39 Latina girls (8-13 years), we tested whether pubertal stage moderated the association between parent- and child-reported anxiety symptoms and FA in the cingulum and uncinate fasciculus. Parent- but not child-reported anxiety symptoms predicted lower cingulum FA, and this effect was moderated by pubertal stage, such that this association was only significant for prepubertal girls. Neither anxiety nor pubertal stage predicted uncinate fasciculus FA. These findings suggest that anxiety is associated with disruptions in girls' cingulum white matter microstructure and that this relationship undergoes maturational changes during puberty.


Assuntos
Substância Branca , Feminino , Criança , Humanos , Substância Branca/diagnóstico por imagem , Ansiedade , Puberdade , Rede Nervosa , Hispânico ou Latino
11.
Neurobiol Aging ; 106: 282-291, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332220

RESUMO

Diffusion imaging studies have observed age-related degradation of white matter that contributes to cognitive deficits separately in younger-old (ages 65-89) and oldest-old (ages 90+) adults. But it remains unclear whether these age effects are magnified in advanced age groups, which may reflect disease-related pathology. Here, we tested whether age-related differences in white matter microstructure followed linear or nonlinear patterns across the entire older adult lifespan (65-98 years), these patterns were influenced by oldest-old adults at increased risk of dementia (cognitive impairment no dementia, CIND), and they explained age effects on episodic memory. Results revealed nonlinear microstructure declines across fiber classes (medial temporal, callosal, association, projection and/or thalamic) that were largest for medial temporal fibers. These patterns remained after excluding oldest-old participants with CIND, indicating that aging of white matter microstructure cannot solely be explained by pathology associated with early cognitive impairment. Moreover, finding that the effect of age on episodic memory was mediated by medial temporal fiber microstructure suggests it is essential for facilitating memory-related neural signals across the older adult lifespan.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Longevidade , Memória Episódica , Substância Branca/patologia , Substância Branca/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Fibras Nervosas/patologia , Risco , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA