Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 158(5): 953-65, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12213839

RESUMO

N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.


Assuntos
Caderinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Transativadores/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/enzimologia , Regiões Promotoras Genéticas/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Tempo , beta Catenina , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
J Cell Biol ; 167(4): 687-98, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15557120

RESUMO

Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1-dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1-dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1-induced axon outgrowth are impaired in Fyn(-/-) CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.


Assuntos
Moléculas de Adesão Celular/metabolismo , Cones de Crescimento/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Retina/embriologia , Medula Espinal/embriologia , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Receptor DCC , Inibidores Enzimáticos/farmacologia , Feminino , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/farmacologia , Netrina-1 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn , Ratos , Receptores de Superfície Celular , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Tirosina/metabolismo , Proteínas de Xenopus , Xenopus laevis , Quinases da Família src/antagonistas & inibidores
3.
Mol Biol Cell ; 13(1): 285-301, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11809840

RESUMO

Cadherin-mediated cell-cell adhesion is a dynamic process that is regulated during embryonic development, cell migration, and differentiation. Different cadherins are expressed in specific tissues consistent with their roles in cell type recognition. In this study, we examine the formation of N-cadherin-dependent cell-cell contacts in fibroblasts and myoblasts. In contrast to E-cadherin, both endogenous and ectopically expressed N-cadherin shuttles between an intracellular and a plasma membrane pool. Initial formation of N-cadherin-dependent cell-cell contacts results from the recruitment of the intracellular pool of N-cadherin to the plasma membrane. N-cadherin also localizes to the Golgi apparatus and both secretory and endocytotic vesicles. We demonstrate that the intracellular pool of N-cadherin is tightly associated with the microtubule (MT) network and that junction formation requires MTs. In addition, localization of N-cadherin to the cortex is dependent on an intact F-actin cytoskeleton. We show that N-cadherin transport requires the MT network as well as the activity of the MT-associated motor kinesin. In conclusion, we propose that N-cadherin distribution is a regulated process promoted by cell-cell contact formation, which controls the biogenesis and turnover of the junctions through the MT network.


Assuntos
Caderinas/metabolismo , Adesão Celular , Fibroblastos/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/imunologia , Actinas/metabolismo , Animais , Caderinas/genética , Caderinas/imunologia , Células Cultivadas , Endocitose , Fibroblastos/ultraestrutura , Imunofluorescência , Complexo de Golgi/metabolismo , Junções Intercelulares/metabolismo , Cinesinas/imunologia , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Microtúbulos/ultraestrutura , Ratos , Proteínas Recombinantes de Fusão/análise , Transfecção
4.
Oncogene ; 21(18): 2901-7, 2002 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-11973651

RESUMO

We have previously shown that expression of active Rac1 and Cdc4Hs inhibits skeletal muscle cell differentiation. We show here, by bromodeoxyuridine incorporation and cyclin D1 expression, that the expression of active Rac1 and Cdc42Hs but not RhoA impairs cell cycle exit of L6 myoblasts cultured in differentiation medium. Furthermore, expression of activated forms of Rac1 and Cdc42Hs elicits the loss of cell contact inhibition and anchorage-dependent growth as measured by focus forming activity and growth in soft agar. RhoA was once again not found to have this effect. We found a constitutive Rac1 and Cdc42Hs activation in three human rhabdomyosarcoma-derived cell lines, one of the most common causes of solid tumours arising from muscle precursors during childhood. Finally, dominant negative forms of Rac1 and Cdc42Hs inhibit cell proliferation of the RD rhabdomyosarcoma cell line. These data suggest an important role for the small GTPases Rac1 and Cdc42Hs in the generation of skeletal muscle tumours.


Assuntos
Transformação Celular Neoplásica , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Divisão Celular , Linhagem Celular , Linhagem Celular Transformada , Humanos , Músculo Esquelético/citologia , Rabdomiossarcoma , Células Tumorais Cultivadas , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia
5.
J Biol Chem ; 282(6): 3624-31, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17158447

RESUMO

Rho GTPases regulate a multitude of cellular processes from cytoskeletal reorganization to gene transcription and are negatively regulated by GTPase-activating proteins (GAPs). Cdc42 GTPase-activating protein (CdGAP) is a ubiquitously expressed GAP for Rac1 and Cdc42. In this study, we set out to identify CdGAP-binding partners and, using a yeast two-hybrid approach, glycogen synthase kinase 3alpha (GSK-3alpha) was identified as a partner for CdGAP. GSK-3 exists in two isoforms, alpha and beta, and is involved in regulating many cellular functions from insulin response to tumorigenesis. We show that GSK-3alpha and -beta interact with CdGAP in mammalian cells. We also demonstrate that GSK-3 phosphorylates CdGAP both in vitro and in vivo on Thr-776, which we have previously shown to be an ERK 1/2 phosphorylation site involved in CdGAP regulation. We report that the mRNA and protein levels of CdGAP are increased upon serum stimulation and that GSK-3 activity is necessary for the up-regulation of the protein levels of CdGAP but not for the increase in mRNA. We conclude that GSK-3 is an important regulator of CdGAP and that regulation of CdGAP protein levels by serum presents a novel mechanism for cells to control Cdc42/Rac1 GTPase signaling pathways.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sequência Consenso , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Prolina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
6.
Stem Cells ; 24(11): 2557-65, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16931773

RESUMO

The ease of isolation and ex vivo culture of marrow-derived stromal cells (MSCs) from adult bone marrow renders them a very promising source of adult stem cells for gene transfer and cell therapy. However, little is known about the signaling pathways that control their in vivo mobilization and subsequent biodistribution. Platelet-derived sphingosine-1-phosphate (S1P), a bioactive lipid that acts via G-protein-coupled-receptors, exerts strong chemoattraction upon MSCs through yet-uncharacterized signaling pathways. We show that the S1P-induced migration and morphological changes of MSCs in vitro require the activities of extracellular signal-regulated kinase (ERK), Rho kinase (ROCK), and matrix metalloproteinase (MMP) signaling molecules. Specifically, S1P-induced remodeling of the MSC cytoskeleton led to the rapid (<1 minute) formation of actin stress fibers via activation of the RhoA/ROCK pathway and required the catalytic activity of MMPs. S1P-induced activation of the mitogen-activated protein kinase kinase-1 (MEK1)/ERK pathway also contributed to the induction of the actin stress fibers and to the redistribution of paxillin at the focal adhesions through tyrosine phosphorylation of focal adhesion kinase in an MMP-dependent manner. Moreover, MMP- and ROCK-dependent molecular events are implicated in the regulation of the S1P-induced activation of ERK. Our results demonstrate that MSC mobilization in response to S1P requires cooperation between MMP-mediated signaling events and the RhoA/ROCK and MEK1/ERK intracellular pathways. Therefore, the characterization of the cellular factors and the intracellular signaling pathways underlying MSC mobilization is crucial to achieve high efficacy in therapeutic use.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisofosfolipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esfingosina/análogos & derivados , Células Estromais/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Amidas/farmacologia , Animais , Células da Medula Óssea/enzimologia , Células da Medula Óssea/metabolismo , Forma Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Flavonoides/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ácidos Hidroxâmicos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Endogâmicos C57BL , Paxilina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Esfingosina/farmacologia , Células Estromais/enzimologia , Quinases Associadas a rho
7.
Biol Cell ; 94(7-8): 535-43, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12566226

RESUMO

The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Células Musculares/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Transfecção , Proteínas rho de Ligação ao GTP/metabolismo
8.
J Biol Chem ; 277(40): 37788-97, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12149262

RESUMO

Netrins are a family of secreted proteins that guide the migration of cells and axonal growth cones during development. DCC (deleted in colorectal cancer) is a receptor for netrin-1 implicated in mediating these responses. Here, we show that DCC interacts constitutively with the SH3/SH2 adaptor Nck in commissural neurons. This interaction is direct and requires the SH3 but not SH2 domains of Nck-1. Moreover, both DCC and Nck-1 associate with the actin cytoskeleton, and this association is mediated by DCC. A dominant negative Nck-1 inhibits the ability of DCC to induce neurite outgrowth in N1E-115 cells and to activate Rac1 in fibroblasts in response to netrin-1. These studies provide evidence for an important role of mammalian Nck-1 in a novel signaling pathway from an extracellular guidance cue to changes in the actin-based cytoskeleton responsible for axonal guidance.


Assuntos
Deleção de Genes , Neurônios/fisiologia , Proteínas Oncogênicas/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Células , Neoplasias Colorretais/genética , Humanos , Camundongos , Família Multigênica , Receptores de Netrina , Neuroblastoma , Ratos , Receptor Cross-Talk/fisiologia , Receptores de Superfície Celular/genética , Medula Espinal/fisiologia , Células Tumorais Cultivadas , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA