Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Med ; 23(5): 927-933, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33500570

RESUMO

PURPOSE: Cystic fibrosis (CF), caused by pathogenic variants in the CF transmembrane conductance regulator (CFTR), affects multiple organs including the exocrine pancreas, which is a causal contributor to cystic fibrosis-related diabetes (CFRD). Untreated CFRD causes increased CF-related mortality whereas early detection can improve outcomes. METHODS: Using genetic and easily accessible clinical measures available at birth, we constructed a CFRD prediction model using the Canadian CF Gene Modifier Study (CGS; n = 1,958) and validated it in the French CF Gene Modifier Study (FGMS; n = 1,003). We investigated genetic variants shown to associate with CF disease severity across multiple organs in genome-wide association studies. RESULTS: The strongest predictors included sex, CFTR severity score, and several genetic variants including one annotated to PRSS1, which encodes cationic trypsinogen. The final model defined in the CGS shows excellent agreement when validated on the FGMS, and the risk classifier shows slightly better performance at predicting CFRD risk later in life in both studies. CONCLUSION: We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-specific CFRD risk to guide CFRD monitoring and treatment.


Assuntos
Fibrose Cística , Diabetes Mellitus , Biomarcadores , Canadá , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido
2.
Exp Dermatol ; 30(1): 112-120, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32813921

RESUMO

Hypertrophic scars are a common complication of burn injuries and represent a major challenge in terms of prevention and treatment. These scars are characterized by a supraphysiological vascular density and by the presence of pathological myofibroblasts (Hmyos) displaying a low apoptosis propensity. However, the nature of the association between these two hallmarks of hypertrophic scarring remains largely unexplored. Here, we show that Hmyos produce signalling entities known as microvesicles that significantly increase the three cellular processes underlying blood vessel formation: endothelial cell proliferation, migration and assembly into capillary-like structures. The release of microvesicles from Hmyos was dose-dependently induced by the serum protein α-2-macroglobulin. Using flow cytometry, we revealed the presence of the α-2-macroglobulin receptor-low-density lipoprotein receptor-related protein 1-on the surface of Hmyos. The inhibition of the binding of α-2-macroglobulin to its receptor abolished the shedding of proangiogenic microvesicles from Hmyos. These findings suggest that the production of microvesicles by Hmyos contributes to the excessive vascularization of hypertrophic scars. α-2-Macroglobulin modulates the release of these microvesicles through interaction with low-density lipoprotein receptor-related protein 1.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Cicatriz Hipertrófica/metabolismo , Miofibroblastos , Neovascularização Patológica/metabolismo , alfa-Macroglobulinas/metabolismo , Adulto , Movimento Celular , Proliferação de Células , Células Cultivadas , Cicatriz Hipertrófica/patologia , Células Endoteliais/fisiologia , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Miofibroblastos/metabolismo , Neovascularização Patológica/patologia , Adulto Jovem , alfa-Macroglobulinas/farmacologia
3.
Angiogenesis ; 20(3): 385-398, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28391377

RESUMO

Wound healing is a very highly organized process where numerous cell types are tightly regulated to restore injured tissue. Myofibroblasts are cells that produce new extracellular matrix and contract wound edges. We previously reported that the human myofibroblasts isolated from normal wound (WMyos) produced microvesicles (MVs) in the presence of the serum. In this study, MVs were further characterized using a proteomic strategy and potential functions of the MVs were determined. MV proteins isolated from six WMyo populations were separated using two-dimensional differential gel electrophoresis. Highly conserved spots were selected and analyzed using mass spectrometry resulting in the identification of 381 different human proteins. Using the DAVID database, clusters of proteins involved in cell motion, apoptosis and adhesion, but also in extracellular matrix production (21 proteins, enrichment score: 3.32) and in blood vessel development/angiogenesis (19 proteins, enrichment score: 2.66) were identified. Another analysis using the functional enrichment analysis tool FunRich was consistent with these results. While the action of the myofibroblasts on extracellular matrix formation is well known, their angiogenic potential is less studied. To further characterize the angiogenic activity of the MVs, they were added to cultured microvascular endothelial cells to evaluate their influence on cell growth and migration using scratch test and capillary-like structure formation in Matrigel®. The addition of a MV-enriched preparation significantly increased endothelial cell growth, migration and capillary formation compared with controls. The release of microvesicles by the wound myofibroblasts brings new perspectives to the field of communication between cells during the normal healing process.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Miofibroblastos/metabolismo , Neovascularização Fisiológica , Pele/irrigação sanguínea , Pele/patologia , Ferimentos e Lesões/patologia , Adulto , Movimento Celular , Proliferação de Células , Células Endoteliais/patologia , Exossomos/metabolismo , Ontologia Genética , Humanos , Soro , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA