Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antimicrob Agents Chemother ; 55(11): 5205-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21844316

RESUMO

In this study, we constructed and evaluated a target-specific, salt-resistant antimicrobial peptide (AMP) that selectively targeted Streptococcus mutans, a leading cariogenic pathogen. The rationale for creating such a peptide was based on the addition of a targeting domain of S. mutans ComC signaling peptide pheromone (CSP) to a killing domain consisting of a portion of the marine-derived, broad-spectrum AMP pleurocidin to generate a target-specific AMP. Here, we report the results of our assessment of such fusion peptides against S. mutans and two closely related species. The results showed that nearly 95% of S. mutans cells lost viability following exposure to fusion peptide IMB-2 (5.65 µM) for 15 min. In contrast, only 20% of S. sanguinis or S. gordonii cells were killed following the same exposure. Similar results were also observed in dual-species mixed cultures of S. mutans with S. sanguinis or S. gordonii. The peptide-guided killing was further confirmed in S. mutans biofilms and was shown to be dose dependent. An S. mutans mutant defective in the CSP receptor retained 60% survival following exposure to IMB-2, suggesting that the targeted peptide predominantly bound to the CSP receptor to mediate killing in the wild-type strain. Our work confirmed that IMB-2 retained its activity in the presence of physiological or higher salt concentrations. In particular, the fusion peptide showed a synergistic killing effect on S. mutans with a preventive dose of NaF. In addition, IMB-2 was relatively stable in the presence of saliva containing 1 mM EDTA and did not cause any hemolysis. We also found that replacement of serine-14 by histidine improved its activity at lower pH. Because of its effectiveness, salt resistance, and minimal toxicity to host cells, this novel target-specific peptide shows promise for future development as an anticaries agent.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Anti-Infecciosos/química , Ácido Edético/química , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Peptídeos/química , Cloreto de Sódio/química
2.
Toxins (Basel) ; 12(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979406

RESUMO

[D-Leu1]MC-LY (1) ([M + H]+m/z 1044.5673, Δ 2.0 ppm), a new microcystin, was isolated from Microcystis aeruginosa strain CPCC464. The compound was characterized by 1H and 13C NMR spectroscopy, liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) and UV spectroscopy. A calibration reference material was produced after quantitation by 1H NMR spectroscopy and LC with chemiluminescence nitrogen detection. The potency of 1 in a protein phosphatase 2A inhibition assay was essentially the same as for MCLR (2). Related microcystins, [D-Leu1]MC-LR (3) ([M + H]+m/z 1037.6041, Δ 1.0 ppm), [D-Leu1]MC-M(O)R (6) ([M + H]+m/z 1071.5565, Δ 2.0 ppm) and [D-Leu1]MC-MR (7) ([M + H]+m/z 1055.5617, Δ 2.2 ppm), were also identified in culture extracts, along with traces of [D-Leu1]MC-M(O2)R (8) ([M + H]+m/z 1087.5510, Δ 1.6 ppm), by a combination of chemical derivatization and LC-HRMS/MS experiments. The relative abundances of 1, 3, 6, 7 and 8 in a freshly extracted culture in the positive ionization mode LC-HRMS were ca. 84, 100, 3.0, 11 and 0.05, respectively. These and other results indicate that [D-Leu1]-containing MCs may be more common in cyanobacterial blooms than is generally appreciated but are easily overlooked with standard targeted LC-MS/MS screening methods.


Assuntos
Microcistinas/isolamento & purificação , Microcystis , Cromatografia Líquida , Microcistinas/química , Proteína Fosfatase 2/antagonistas & inibidores , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas em Tandem
3.
PLoS One ; 11(4): e0153642, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27101152

RESUMO

Metabolic changes in spikelets of wheat varieties FL62R1, Stettler, Muchmore and Sumai3 following Fusarium graminearum infection were explored using NMR analysis. Extensive 1D and 2D 1H NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. In addition, metabolic changes that are observed in all studied varieties as well as wheat variety specific changes have been determined and discussed. A new method for metabolite quantification from NMR data that automatically aligns spectra of standards and samples prior to quantification using multivariate linear regression optimization of spectra of assigned metabolites to samples' 1D spectra is described and utilized. Fusarium infection-induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance.


Assuntos
Biomarcadores/metabolismo , Fusariose/metabolismo , Fusarium/metabolismo , Triticum/microbiologia , Espectroscopia de Prótons por Ressonância Magnética
4.
PLoS One ; 8(3): e58866, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554944

RESUMO

Soricidin is a 54-amino acid peptide found in the paralytic venom of the northern short-tailed shrew (Blarina brevicauda) and has been found to inhibit the transient receptor potential of vallinoid type 6 (TRPV6) calcium channels. We report that two shorter peptides, SOR-C13 and SOR-C27, derived from the C-terminus of soricidin, are high-affinity antagonists of human TRPV6 channels that are up-regulated in a number of cancers. Herein, we report molecular imaging methods that demonstrate the in vivo diagnostic potential of SOR-C13 and SOR-C27 to target tumor sites in mice bearing ovarian or prostate tumors. Our results suggest that these novel peptides may provide an avenue to deliver diagnostic and therapeutic reagents directly to TRPV6-rich tumors and, as such, have potential applications for a range of carcinomas including ovarian, breast, thyroid, prostate and colon, as well as certain leukemia's and lymphomas.


Assuntos
Peptídeos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes , Expressão Gênica , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Conformação Molecular , Imagem Molecular , Neoplasias/diagnóstico , Neoplasias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Imagem Óptica , Peptídeos/química , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Transplante Heterólogo
5.
J Biol Chem ; 280(36): 31732-8, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16014632

RESUMO

Degradation of misfolded and damaged proteins by the 26 S proteasome requires the substrate to be tagged with a polyubiquitin chain. Assembly of polyubiquitin chains and subsequent substrate labeling potentially involves three enzymes, an E1, E2, and E3. E2 proteins are key enzymes and form a thioester intermediate through their catalytic cysteine with the C-terminal glycine (Gly76) of ubiquitin. This thioester intermediate is easily hydrolyzed in vitro and has eluded structural characterization. To overcome this, we have engineered a novel ubiquitin-E2 disulfide-linked complex by mutating Gly76 to Cys76 in ubiquitin. Reaction of Ubc1, an E2 from Saccharomyces cerevisiae, with this mutant ubiquitin resulted in an ubiquitin-E2 disulfide that could be purified and was stable for several weeks. Chemical shift perturbation analysis of the disulfide ubiquitin-Ubc1 complex by NMR spectroscopy reveals an ubiquitin-Ubc1 interface similar to that for the ubiquitin-E2 thioester. In addition to the typical E2 catalytic domain, Ubc1 contains an ubiquitin-associated (UBA) domain, and we have utilized NMR spectroscopy to demonstrate that in this disulfide complex the UBA domain is freely accessible to non-covalently bind a second molecule of ubiquitin. The ability of the Ubc1 to bind two ubiquitin molecules suggests that the UBA domain does not interact with the thioester-bound ubiquitin during polyubiquitin chain formation. Thus, construction of this novel ubiquitin-E2 disulfide provides a method to characterize structurally the first step in polyubiquitin chain assembly by Ubc1 and its related class II enzymes.


Assuntos
Proteínas de Saccharomyces cerevisiae/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitina/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química
6.
J Biomol NMR ; 26(2): 147-55, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12766410

RESUMO

Ubiquitination plays an important role in many biological processes, including DNA repair, cell cycle regulation, and protein degradation. In the latter pathway the ubiquitin-conjugating enzymes or E2 enzymes are important proteins forming a key E2-ubiquitin thiolester prior to substrate labelling. While the structure of the 150-residue catalytic domain has been well characterized, a subset of E2 enzymes (class II) carry a variable length C-terminal "tail" where structural detail is not available. The presence of this C-terminal extension plays an important role in target recognition, ubiquitin chain assembly and oligomerization. In this work NMR spectroscopy was used to determine the secondary structure of the 215-residue yeast E2 protein Ubc1 and the interactions of its C-terminus with the catalytic domain. The C-terminal tail of Ubc1 was found to contain three alpha-helices between residues D169-S176, K183-L193 and N203-L213 providing the first evidence for a well-defined secondary structure in this region. Chemical shift mapping indicated that residues in the L2 loop of the catalytic domain were most affected indicating the C-terminus of Ubc1 likely interacts with this region. This site of interaction is distinct from that observed in the E2-ubiquitin thiolester and may act to protect the catalytic C88 residue and direct the interaction of ubiquitin in the thiolester intermediate.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Enzimas de Conjugação de Ubiquitina/química , Sítios de Ligação , Proteínas Fúngicas/química , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
J Biol Chem ; 279(45): 47139-47, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15328341

RESUMO

E2 conjugating enzymes form a thiol ester intermediate with ubiquitin, which is subsequently transferred to a substrate protein targeted for degradation. While all E2 proteins comprise a catalytic domain where the thiol ester is formed, several E2s (class II) have C-terminal extensions proposed to control substrate recognition, dimerization, or polyubiquitin chain formation. Here we present the novel solution structure of the class II E2 conjugating enzyme Ubc1 from Saccharomyces cerevisiae. The structure shows the N-terminal catalytic domain adopts an alpha/beta fold typical of other E2 proteins. This domain is physically separated from its C-terminal domain by a 22-residue flexible tether. The C-terminal domain adopts a three-helix bundle that we have identified as an ubiquitin-associated domain (UBA). NMR chemical shift perturbation experiments show this UBA domain interacts in a regioselective manner with ubiquitin. This two-domain structure of Ubc1 was used to identify other UBA-containing class II E2 proteins, including human E2-25K, that likely have a similar architecture and to determine the role of the UBA domain in facilitating polyubiquitin chain formation.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Enzimas de Conjugação de Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Dimerização , Relação Dose-Resposta a Droga , Humanos , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA