Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113631, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183651

RESUMO

Glioblastoma stem-like cells (GSCs) compose a tumor-initiating and -propagating population remarkably vulnerable to variation in the stability and integrity of the lysosomal compartment. Previous work has shown that the expression and activity of the paracaspase MALT1 control GSC viability via lysosome abundance. However, the underlying mechanisms remain elusive. By combining RNA sequencing (RNA-seq) with proteome-wide label-free quantification, we now report that MALT1 repression in patient-derived GSCs alters the homeostasis of cholesterol, which accumulates in late endosomes (LEs)-lysosomes. This failure in cholesterol supply culminates in cell death and autophagy defects, which can be partially reverted by providing exogenous membrane-permeable cholesterol to GSCs. From a molecular standpoint, a targeted lysosome proteome analysis unraveled that Niemann-Pick type C (NPC) lysosomal cholesterol transporters are diluted when MALT1 is impaired. Accordingly, we found that NPC1/2 inhibition and silencing partially mirror MALT1 loss-of-function phenotypes. This supports the notion that GSC fitness relies on lysosomal cholesterol homeostasis.


Assuntos
Glioblastoma , Doença de Niemann-Pick Tipo C , Humanos , Proteoma/metabolismo , Proteínas de Transporte/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Homeostase , Lisossomos/metabolismo , Colesterol/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
2.
Commun Biol ; 6(1): 1271, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102401

RESUMO

Centriolar satellites are multiprotein aggregates that orbit the centrosome and govern centrosome homeostasis and primary cilia formation. In contrast to the scaffold PCM1, which nucleates centriolar satellites and has been linked to microtubule dynamics, autophagy, and intracellular trafficking, the functions of its interactant CEP131 beyond ciliogenesis remain unclear. Using a knockout strategy in a non-ciliary T-cell line, we report that, although dispensable for centriolar satellite assembly, CEP131 participates in optimal tubulin glycylation and polyglutamylation, and microtubule regrowth. Our unsupervised label-free proteomic analysis by quantitative mass spectrometry further uncovered mitochondrial and apoptotic signatures. CEP131-deficient cells showed an elongated mitochondrial network. Upon cell death inducers targeting mitochondria, knockout cells displayed delayed cytochrome c release from mitochondria, subsequent caspase activation, and apoptosis. This mitochondrial permeabilization defect was intrinsic, and replicable in vitro with isolated organelles. These findings extend CEP131 functions to life-and-death decisions and propose ways to interfere with mitochondrial apoptosis.


Assuntos
Apoptose , Mitocôndrias , Centríolos/metabolismo , Proteômica
3.
J Med Chem ; 66(23): 15648-15670, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051674

RESUMO

Leucettinibs are substituted 2-aminoimidazolin-4-ones (inspired by the marine sponge natural product Leucettamine B) developed as pharmacological inhibitors of DYRK1A (dual-specificity, tyrosine phosphorylation-regulated kinase 1A), a therapeutic target for indications such as Down syndrome and Alzheimer's disease. Leucettinib-21 was selected as a drug candidate following extensive structure/activity studies and multiparametric evaluations. We here report its physicochemical properties (X-ray powder diffraction, differential scanning calorimetry, stability, solubility, crystal structure) and drug-like profile. Leucettinib-21's selectivity (analyzed by radiometric, fluorescence, interaction, thermal shift, residence time assays) reveals DYRK1A as the first target but also some "off-targets" which may contribute to the drug's biological effects. Leucettinib-21 was cocrystallized with CLK1 and modeled in the DYRK1A structure. Leucettinib-21 inhibits DYRK1A in cells (demonstrated by direct catalytic activity and phosphorylation levels of Thr286-cyclin D1 or Thr212-Tau). Leucettinib-21 corrects memory disorders in the Down syndrome mouse model Ts65Dn and is now entering safety/tolerance phase 1 clinical trials.


Assuntos
Doença de Alzheimer , Síndrome de Down , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Síndrome de Down/tratamento farmacológico , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Imidazolidinas/química , Imidazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA