Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Proteome Res ; 22(4): 1309-1321, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36888912

RESUMO

O-ß-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).


Assuntos
beta-N-Acetil-Hexosaminidases , Proteínas tau , Animais , Humanos , Camundongos , Acetilglucosamina/farmacologia , beta-N-Acetil-Hexosaminidases/genética , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Proteínas tau/química , Espectrometria de Massas em Tandem
2.
Glia ; 66(3): 492-504, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29134678

RESUMO

Chronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137). Immune checkpoint inhibition was therefore suggested as potential treatment for neurodegenerative disorders when activation of the immune system is appropriate. Because a xenogeneic rat antibody (mAb) was used in the study, whether the effect was specific to PD1 target engagement was uncertain. In the present study we examined whether PD1 immunotherapy can lower amyloid-ß pathology in a range of different amyloid transgenic models performed at three pharmaceutical companies with the exact same anti-PD1 isotype and two mouse chimeric variants. Although PD1 immunotherapy stimulated systemic activation of the peripheral immune system, monocyte-derived macrophage infiltration into the brain was not detected, and progression of brain amyloid pathology was not altered. Similar negative results of the effect of PD1 immunotherapy on amyloid brain pathology were obtained in two additional models in two separate institutions. These results show that inhibition of PD1 checkpoint signaling by itself is not sufficient to reduce amyloid pathology and that additional factors might have contributed to previously published results (Baruch et al., (): Nature Medicine, 22:135-137). Until such factors are elucidated, animal model data do not support further evaluation of PD1 checkpoint inhibition as a therapeutic modality for Alzheimer's disease.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Anticorpos/administração & dosagem , Encéfalo/imunologia , Imunoterapia , Receptor de Morte Celular Programada 1/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Anticorpos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Baço/imunologia
3.
J Med Chem ; 63(22): 14017-14044, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33197187

RESUMO

O-GlcNAcylation is a post-translational modification of tau understood to lower the speed and yield of its aggregation, a pathological hallmark of Alzheimer's disease (AD). O-GlcNAcase (OGA) is the only enzyme that removes O-linked N-acetyl-d-glucosamine (O-GlcNAc) from target proteins. Therefore, inhibition of OGA represents a potential approach for the treatment of AD by preserving the O-GlcNAcylated tau protein. Herein, we report the multifactorial optimization of high-throughput screening hit 8 to a potent, metabolically stable, and orally bioavailable diazaspirononane OGA inhibitor (+)-56. The human OGA X-ray crystal structure has been recently solved, but bacterial hydrolases are still widely used as structural homologues. For the first time, we reveal how a nonsaccharide series of inhibitors binds bacterial OGA and discuss the suitability of two different bacterial orthologues as surrogates for human OGA. These breakthroughs enabled structure-activity relationships to be understood and provided context and boundaries for the optimization of druglike properties.


Assuntos
Compostos Aza/farmacologia , Inibidores Enzimáticos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Compostos Aza/química , Catálise , Inibidores Enzimáticos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Mutagênese , Relação Estrutura-Atividade
4.
PLoS One ; 10(12): e0146127, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26720731

RESUMO

Alzheimer's disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation.


Assuntos
Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Humanos , Modelos Biológicos , Mutação/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Tauopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA