RESUMO
The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAl2O4-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAl2O4-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite. An XRD diffractogram confirmed the existence of two phases, NiAl2O4 and NiO, both corresponding to the face-centred cubic crystal structure. The performances of the modified electrode, as a biomolecule, in the detection of ascorbic acid was evaluated electrochemically by cyclic voltammetry and chronoamperometry. The sensor exhibited a sensitive electrocatalytic response at a working potential of E = +0.3 V vs. Ag/Ag Cl, reaching a steady-state current within 30 s after each addition of ascorbic acid solution with a wide dynamic range of concentrations extending from attolevels (10-18 M) to molar (10 mM) and limits of detection and quantification of 1.2 × 10-18 M and 3.96 × 10-18 M, respectively. This detection device was tested for the quantification of ascorbic acid in a 500 mg vitamin C commercialized tablet that was not pre-treated.
RESUMO
BACKGROUND: Typically, patients with Acid Sphingomyelinase Deficiency (ASMD) because of p.Arg610del mutation, have mild phenotype with normal linear growth. OBSERVATION: We reported the case of 2 Tunisian brothers who have been referred for splenomegaly, polyadenopathies, pubertal, and growth delay. Molecular testing of SMPD1 gene revealed the presence of a homozygous p.Arg610del mutation. Lysosphingomyelin and its isoform-509 were both increased confirming ASMD for both cases. Growth hormone deficiency was highly suspected but growth hormone response after stimulating tests was acceptable for both patients. CONCLUSIONS: There is no correlation between phenotype-genotype in case of p.Arg610del mutation that could be associated to a severe delay of growth.
Assuntos
Deficiências do Desenvolvimento/patologia , Homozigoto , Mutação , Doenças de Niemann-Pick/complicações , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Adolescente , Adulto , Deficiências do Desenvolvimento/etiologia , Humanos , Masculino , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/patologia , Fenótipo , Prognóstico , Irmãos , Adulto JovemRESUMO
BACKGROUND: A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS: A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS: Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS: In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.
Assuntos
Neoplasias da Mama/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Alelos , Neoplasias da Mama/epidemiologia , Família , Feminino , Genes Neoplásicos , Estudos de Associação Genética , Variação Genética , Humanos , Masculino , Linhagem , Mapas de Interação de Proteínas , TunísiaRESUMO
BACKGROUND: Breast cancer is the most common cancer in women worldwide. Around 50% of breast cancer familial risk has been so far explained by known susceptibility alleles with variable levels of risk and prevalence. The vast majority of these breast cancer associated variations reported to date are from populations of European ancestry. In spite of its heterogeneity and genetic wealth, North-African populations have not been studied by the HapMap and the 1000Genomes projects. Thus, very little is known about the genetic architecture of these populations. METHODS: This study aimed to investigate a subset of common breast cancer loci in the general Tunisian population and to compare their genetic composition to those of other ethnic groups. We undertook a genome-wide haplotype study by genotyping 135 Tunisian subjects using the Affymetrix 6.0-Array. We compared Tunisian allele frequencies and linkage disequilibrium patterns to those of HapMap populations and we performed a comprehensive assessment of the functional effects of several selected variants. RESULTS: Haplotype analyses showed that at risk haplotypes on 2p24, 4q21, 6q25, 9q31, 10q26, 11p15, 11q13 and 14q32 loci are considerably frequent in the Tunisian population (> 20%). Allele frequency comparison showed that the frequency of rs13329835 is significantly different between Tunisian and all other HapMap populations. LD-blocks and Principle Component Analysis revealed that the genetic characteristics of breast cancer variants in the Tunisian, and so probably the North-African populations, are more similar to those of Europeans than Africans. Using eQTl analysis, we characterized rs9911630 as the most strongly expression-associated SNP that seems to affect the expression levels of BRCA1 and two long non coding RNAs (NBR2 and LINC008854). Additional in-silico analysis also suggested a potential functional significance of this variant. CONCLUSIONS: We illustrated the utility of combining haplotype analysis in diverse ethnic groups with functional analysis to explore breast cancer genetic architecture in Tunisia. Results presented in this study provide the first report on a large number of common breast cancer genetic polymorphisms in the Tunisian population which may establish a baseline database to guide future association studies in North Africa.
Assuntos
População Negra/genética , Neoplasias da Mama/genética , Loci Gênicos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Adulto , Simulação por Computador , Feminino , Frequência do Gene/genética , Haplótipos/genética , Voluntários Saudáveis , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , TunísiaRESUMO
OBJECTIVES: Consanguinity is common in Tunisia. However, little information exists on its impact on recessive disorders. In this study, we evaluate the impact of consanguineous marriages on the occurrence of some specific autosomal recessive disorders and consider how other factors, such as population substructure and mutation frequency, may be of equal importance in disease prevalence. METHODS: Consanguinity profiles were retrospectively studied among 425 Tunisian patients suffering from autosomal recessive xeroderma pigmentosum, dystrophic epidermolysis bullosa, nonsyndromic retinitis pigmentosa, Gaucher disease, Fanconi anemia, glycogenosis type I, and ichthyosis, and compared to those of a healthy control sample. RESULTS: Consanguinity was observed in 341 cases (64.94%). Consanguinity rates per disease were 75.63, 63.64, 60.64, 61.29, 57.89, 73.33, and 51.28%, respectively. First-cousin marriages were the most common form of consanguinity (48.94%) with the percentages of 55.46, 45.46, 47.87, 48.39, 45.61, 56.66, and 35.90%, respectively. A very high level of geographic endogamy was also observed (93.92%), with the values by disease ranging between 75.86 and 96.64%. We observed an overall excess risk associated to consanguinity of nearly sevenfold which was proportional to the number of affected siblings and the frequency of disease allele in the family. Consanguinity was significantly associated with the first five cited diseases (odds ratio = 24.41, 15.17, 7.5, 5.53, and 5.07, respectively). However, no meaningful effects were reported among the remaining diseases. CONCLUSIONS: This study reveals a variation in the excess risk linked to consanguinity according to the type of disorder, suggesting the potential of cryptic population substructure to contribute to disease incidence in populations with complex social structure like Tunisia. It also emphasizes the role of other health and demographic aspects such as mutation frequency and reproductive replacement in diseases etiology.
Assuntos
Frequência do Gene , Genes Recessivos , Predisposição Genética para Doença/genética , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Tunísia/epidemiologia , Adulto JovemRESUMO
Located at the cross-road between Europe and Africa, Tunisia is a North African country of 11 million inhabitants. Throughout its history, it has been invaded by different ethnic groups. These historical events, and consanguinity, have impacted on the spectrum and frequency of genetic diseases in Tunisia. Investigations of Tunisian families have significantly contributed to elucidation of the genetic bases of rare disorders, providing an invaluable resource of cases due to particular familial structures (large family size, consanguinity and share of common ancestors). In the present study, we report on and review different aspects of consanguinity in the Tunisian population as a case study, representing several features common to neighboring or historically related countries in North Africa and the Middle East. Despite the educational, demographic and behavioral changes that have taken place during the last four decades, familial and geographical endogamy still exist at high frequencies, especially in rural areas. The health implications of consanguinity in Tunisian families include an increased risk of the expression of autosomal recessive diseases and particular phenotypic expressions. With new sequencing technologies, the investigation of consanguineous populations provides a unique opportunity to better evaluate the impact of consanguinity on the genome dynamic and on health, in addition to a better understanding of the genetic bases of diseases.
Assuntos
Consanguinidade , Doenças Genéticas Inatas/epidemiologia , Genética Populacional , Genoma Humano/genética , Casamento/estatística & dados numéricos , Efeito Fundador , Doenças Genéticas Inatas/genética , Humanos , Tunísia/epidemiologiaRESUMO
Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.
RESUMO
[This corrects the article DOI: 10.3389/fgene.2024.1384094.].
RESUMO
BACKGROUND: Xeroderma pigmentosum is an autosomal recessive disease characterized by a high sensitivity to UV radiations. The disease is clinically and genetically heterogeneous, thus making accurate early clinical diagnosis difficult. Although the disease is considered rare worldwide, previous studies have shown that it is more frequent in Maghreb countries. So far, no genetic study has been published on Libyan patients, except three reports limited to clinical descriptions. METHODS: Our study, which represents the first genetic characterization of XP in Libya, was conducted on 14 unrelated families including 23 Libyan XP patients with a consanguinity rate of 93%. Blood samples were collected from 201 individuals including patients and their relatives. Patients were screened for founder mutations already described in Tunisia. RESULTS: The two founder Maghreb XP mutations, XPA p.Arg228* associated with the neurological form and XPC p.Val548Alafs*25 in patients with only cutaneous manifestations, were homozygously identified. The latter was predominant (19 of 23 patients). In addition, another XPC homozygous mutation (p.Arg220*) has been identified in only one patient. For the remaining patient, the absence of founder XPA, XPC, XPD, and XPG mutations suggests mutational heterogeneity of XP in Libya. CONCLUSION: Identification of common mutations with other Maghreb populations is in favor of a common ancestor in North-African populations.
Assuntos
Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/genética , Proteínas de Ligação a DNA/genética , Líbia , Mutação , TunísiaRESUMO
Introduction: Type 2 diabetes (T2D) is a multifactorial disease involving genetic and environmental components. Several genome-wide association studies (GWAS) have been conducted to decipher potential genetic aberrations promoting the onset of this metabolic disorder. These GWAS have identified over 400 associated variants, mostly in the intronic or intergenic regions. Recently, a growing number of exome genotyping or exome sequencing experiments have identified coding variants associated with T2D. Such studies were mainly conducted in European populations, and the few candidate-gene replication studies in North African populations revealed inconsistent results. In the present study, we aimed to discover the coding genetic etiology of T2D in the Tunisian population. Methods: We carried out a pilot Exome Wide Association Study (EWAS) on 50 Tunisian individuals. Single variant analysis was performed as implemented in PLINK on potentially deleterious coding variants. Subsequently, we applied gene-based and gene-set analyses using MAGMA software to identify genes and pathways associated with T2D. Potential signals were further replicated in an existing large in-silico dataset, involving up to 177116 European individuals. Results: Our analysis revealed, for the first time, promising associations between T2D and variations in MYORG gene, implicated in the skeletal muscle fiber development. Gene-set analysis identified two candidate pathways having nominal associations with T2D in our study samples, namely the positive regulation of neuron apoptotic process and the regulation of mucus secretion. These two pathways are implicated in the neurogenerative alterations and in the inflammatory mechanisms of metabolic diseases. In addition, replication analysis revealed nominal associations of the regulation of beta-cell development and the regulation of peptidase activity pathways with T2D, both in the Tunisian subjects and in the European in-silico dataset. Conclusions: The present study is the first EWAS to investigate the impact of single genetic variants and their aggregate effects on T2D risk in Africa. The promising disease markers, revealed by our pilot EWAS, will promote the understanding of the T2D pathophysiology in North Africa as well as the discovery of potential treatments.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Tunísia/epidemiologia , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Estudo de Associação Genômica Ampla , ÍntronsRESUMO
A 4-year-old boy born from a consanguineous marriage was referred to our department for congenital ichthyosis. He was a collodion baby at birth and progressively developed a generalized erythroderma with fine whitish scales covering his body. Initially, he was diagnosed as having congenital ichthyosiform erythroderma. Physical examination revealed fine white grayish scales with an erythematous background involving the scalp and flexural areas (Figure 1a). His palms and soles depicted hyperlinearity (Figure 1b). His hair, teeth, nails, and mucosa were normal. Abdominal examination revealed hepatomegaly, and the liver was enlarged by 4 cm below the right costal margin. He had a normal motor and mental development, and his neurologic examination was normal. There was no muscular weakness. (SKINmed. 2022;20:305-306).
Assuntos
Eritrodermia Ictiosiforme Congênita , Ictiose Lamelar , Pré-Escolar , Cabelo , Humanos , Eritrodermia Ictiosiforme Congênita/diagnóstico , Ictiose Lamelar/diagnóstico , Recém-Nascido , MasculinoRESUMO
Copy number variation (CNV) is considered as the most frequent type of structural variation in the human genome. Some CNVs can act on human phenotype diversity, encompassing rare Mendelian diseases and genomic disorders. The North African populations remain underrepresented in public genetic databases in terms of single-nucleotide variants as well as for larger genomic mutations. In this study, we present the first CNV map for a North African population using the Affymetrix Genome-Wide SNP (single-nucleotide polymorphism) array 6.0 array genotyping intensity data to call CNVs in 102 Tunisian healthy individuals. Two softwares, PennCNV and Birdsuite, were used to call CNVs in order to provide reliable data. Subsequent bioinformatic analyses were performed to explore their features and patterns. The CNV map of the Tunisian population includes 1083 CNVs spanning 61.443 Mb of the genome. The CNV length ranged from 1.017 kb to 2.074 Mb with an average of 56.734 kb. Deletions represent 57.43% of the identified CNVs, while duplications and the mixed loci are less represented. One hundred and three genes disrupted by CNVs are reported to cause 155 Mendelian diseases/phenotypes. Drug response genes were also reported to be affected by CNVs. Data on genes overlapped by deletions and duplications segments and the sequence properties in and around them also provided insights into the functional and health impacts of CNVs. These findings represent valuable clues to genetic diversity and personalized medicine in the Tunisian population as well as in the ethnically similar populations from North Africa.
RESUMO
Populations in North Africa (NA) are characterized by a high rate of consanguinity. Consequently, the proportion of founder mutations might be higher than expected and could be a major cause for the high prevalence of recessive genetic disorders like Fanconi anemia (FA). We report clinical, cytogenetic, and molecular characterization of FANCA in 29 North African FA patients from Tunisia, Libya, and Algeria. Cytogenetic tests revealed high rates of spontaneous chromosome breakages for all patients except two of them. FANCA molecular analysis was performed using three different molecular approaches which allowed us to identify causal mutations as homozygous or compound heterozygous forms. It included a nonsense mutation (c.2749Câ>âT; p.Arg917Ter), one reported missense mutation (c.1304Gâ>âA; p.Arg435His), a novel missense variant (c.1258Gâ>âA; p.Asp409Glu), and the FANCA most common reported mutation (c.3788_3790delTCT; p.Phe1263del). Furthermore, three founder mutations were identified in 86.7% of the 22 Tunisian patients: (1) a deletion of exon 15, in 36.4% patients (8/22); (2), a deletion of exons 4 and 5 in 23% (5/22) and (3) an intronic mutation c.2222â+â166Gâ>âA, in 27.3% (6/22). Despite the relatively small number of patients studied, our results depict the mutational landscape of FA among NA populations and it should be taken into consideration for appropriate genetic counseling.
RESUMO
Xeroderma Pigmentosum (XP) is a rare genetic disorder affecting the nucleotide excision repair system (NER). It is characterized by an extreme sensitivity to sunlight that induces cutaneous disorders such as severe sunburn, freckling and cancers. In Tunisia, six complementation groups have been already identified. However, the genetic etiology remains unknown for several patients. In this study, we investigated clinical characteristics and genetic defects in two families with atypical phenotypes originating from the central region in Tunisia. Clinical investigation revealed mild cutaneous features in two patients who develop multiple skin cancers at later ages, with no neurological disorders. Targeted gene sequencing revealed that they carried novel variants. A homozygous variation in the ERCC4 gene c.1762G>T, p.V588F, detected in patient XP21. As for patient XP134, he carried two homozygous mutations in the DDB2 gene c.613T>C, p.C205R and c.618C>A, p.S206R. Structural modeling of the protein predicted the identified ERCC4 variant to mildly affect protein stability without affecting its functional domains. As for the case of DDB2 double mutant, the second variation seems to cause a mild effect on the protein structure unlike the first variation which does not seem to have an effect on it. This study contributes to further characterize the mutation spectrum of XP in Tunisian families. Targeted gene sequencing accelerated the identification of rare unexpected genetic defects for diagnostic testing and genetic counseling.
RESUMO
Genetic diseases in Tunisia are a real public health problem given their chronicity and the lack of knowledge concerning their prevalence and etiology, and the high rates of consanguinity. Hence, we performed systematic reviews of the literature in order to provide a more recent spectrum of these disorders and to expose the challenges that still exist to tackle these kinds of diseases. A manual textual data mining was conducted using MeSH and PubMed databases. Collected data were classified according to the CIM-10 classification and the transmission mode. The spectrum of these diseases is estimated to be 589 entities. This suggests remarkable progress through the development of biomedical health research activities and building capacities. Sixty percent of the reported disorders are autosomal recessive, which could be explained by the high prevalence of endogamous mating. Congenital malformations (29.54%) are the major disease group, followed by metabolic diseases (22%). Sixty percent of the genetic diseases have a known molecular etiology. We also reported additional cases of comorbidity that seem to be a common phenomenon in our population. We also noticed that epidemiological data are scarce. Newborn and carrier screening was only limited to pilot projects for a few genetic diseases. Collected data are being integrated into a database under construction that will be a valuable decision-making tool. This study provides the current situation of genetic diseases in Tunisia and highlights their particularities. Early detection of the disease is important to initiate critical intervention and to reduce morbidity and mortality.
Assuntos
Doenças Genéticas Inatas/genética , População/genética , Consanguinidade , Genes Recessivos , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/epidemiologia , Testes Genéticos/estatística & dados numéricos , Humanos , TunísiaRESUMO
The role of the prokineticin 2 pathway in human reproduction, olfactory bulb morphogenesis, and gonadotropin-releasing hormone secretion is well established. Recent studies have highlighted the implication of di/oligogenic inheritance in this disorder. In the present study, we aimed to identify the genetic mechanisms that could explain incomplete penetrance in hypogonadotropic hypogonadism (HH). This study involved two unrelated Tunisian patients with HH, which was triggered by identifying a homozygous p.(Pro290Ser) mutation in the PROKR2 gene in a girl (HH1) with Kallmann syndrome (KS). The functional effect of this variant has previously been well demonstrated. Unexpectedly, her unaffected father (HH1P) and brother (HH1F) also carried this genetic variation at a homozygous state. In the second family, we identified a heterozygous p.(Lys205del) mutation in PROKR2, both in a male patient with normosmic idiopathic IHH (HH12) and his asymptomatic mother. Whole-exome sequencing in the three HH1 family members allowed the identification of additional variants in the prioritized genes. We then carried out digenic combination predictions using the oligogenic resource for variant analysis (ORVAL) software. For HH1, we found the highest number of disease-causing variant pairs. Notably, a CCDC141 variant (c.2803C > T) was involved in 18 pathogenic digenic combinations. The CCDC141 variant acts in an autosomal recessive inheritance mode, based on the digenic effect prediction data. For the second patient (HH12), prediction by ORVAL allowed the identification of an interesting pathogenic digenic combination between DUSP6 and SEMA7A genes, predicted as "dual molecular diagnosis." The SEMA7A variant p.(Glu436Lys) is novel and predicted as a VUS by Varsome. Sanger validation revealed the absence of this variant in the healthy mother. We hypothesize that disease expression in HH12 could be induced by the digenic transmission of the SEMA7A and DUSP6 variants or a monogenic inheritance involving only the SEMA7A VUS if further functional assays allow its reclassification into pathogenic. Our findings confirm that homozygous loss-of-function genetic variations are insufficient to cause KS, and that oligogenism is most likely the main transmission mode involved in Congenital Hypogonadotropic Hypogonadism.
RESUMO
BACKGROUND: Breast cancer is the world's most common cancer among women. It is becoming an increasingly urgent problem in low- and middle-income countries (LMICs) where a large fraction of women is diagnosed with advanced-stage disease and have no access to treatment or basic palliative care. About 5-10% of all breast cancers can be attributed to hereditary genetic components and up to 25% of familial cases are due to mutations in BRCA1/2 genes. Since their discovery in 1994 and 1995, as few as 18 mutations have been identified in BRCA genes in the Tunisian population. The aim of this study is to identify additional BRCA mutations, to estimate their contribution to the hereditary breast and ovarian cancers in Tunisia and to investigate the clinicopathological signatures associated with BRCA mutations. METHODS: A total of 354 patients diagnosed with breast and ovarian cancers, including 5 male breast cancer cases, have been investigated for BRCA1/2 mutations using traditional and/or next generation sequencing technologies. Clinicopathological signatures associated with BRCA mutations have also been investigated. RESULTS: In the current study, 16 distinct mutations were detected: 10 in BRCA1 and 6 in BRCA2, of which 11 are described for the first time in Tunisia including 3 variations that have not been reported previously in public databases namely BRCA1_c.915T>A; BRCA2_c.-227-?_7805+? and BRCA2_c.249delG. Early age at onset, family history of ovarian cancer and high tumor grade were significantly associated with BRCA status. BRCA1 carriers were more likely to be triple negative breast cancer compared to BRCA2 carriers. A relatively high frequency of contralateral breast cancer and ovarian cancer occurrence was observed among BRCA carriers and was more frequent in patients carrying BRCA1 mutations. CONCLUSION: Our study provides new insights into breast and ovarian cancer genetic landscape in the under-represented North African populations. The prevalence assessment of novel and recurrent BRCA1/2 pathogenic mutations will enhance the use of personalized treatment and precise screening strategies by both affected and unaffected North African cancer cases.
RESUMO
Alpha-Mannosidosis (AM) is an ultra-rare storage disorder caused by a deficiency of lysosomal alpha-mannosidase encoded by the MAN2B1 gene. Clinical presentation of AM includes mental retardation, recurrent infections, hearing loss, dysmorphic features, and motor dysfunctions. AM has never been reported in Tunisia. We report here the clinical and genetic study of six patients from two Tunisian families with AM. The AM diagnosis was confirmed by an enzymatic activity assay. Genetic investigation was conducted by Sanger sequencing of the mutational hotspots for the first family and by ES analysis for the second one. In the first family, a frameshift duplication p.(Ser802GlnfsTer129) was identified in the MAN2B1 gene. For the second family, ES analysis led to the identification of a missense mutation p.(Arg229Trp) in the MAN2B1 gene in four affected family members. The p.(Ser802GlnfsTer129) mutation induces a premature termination codon which may trigger RNA degradation by the NMD system. The decrease in the levels of MAN2B1 synthesis could explain the severe phenotype observed in the index case. According to the literature, the p.(Arg229Trp) missense variant does not have an impact on MAN2B1 maturation and transportation, which correlates with a moderate clinical sub-type. To explain the intra-familial variability of cognitive impairment, exome analysis allowed the identification of two likely pathogenic variants in GHR and SLC19A3 genes potentially associated to cognitive decline. The present study raises awareness about underdiagnosis of AM in the region that deprives patients from accessing adequate care. Indeed, early diagnosis is critical in order to prevent disease progression and to propose enzyme replacement therapy.
Assuntos
Proteínas de Transporte/genética , Disfunção Cognitiva/genética , Consanguinidade , Predisposição Genética para Doença , Proteínas de Membrana Transportadoras/genética , alfa-Manosidose/genética , Audiometria , Sequência de Bases , Família , Feminino , Geografia , Humanos , Masculino , Mutação/genética , Linhagem , Fenótipo , Tunísia , Sequenciamento do ExomaRESUMO
In silico DNA sequence generation is a powerful technology to evaluate and validate bioinformatics tools, and accordingly more than 35 DNA sequence simulation tools have been developed. With such a diverse array of tools to choose from, an important question is: Which tool should be used for a desired outcome? This question is largely unanswered as documentation for many of these DNA simulation tools is sparse. To address this, we performed a review of DNA sequence simulation tools developed to date and evaluated 20 state-of-art DNA sequence simulation tools on their ability to produce accurate reads based on their implemented sequence error model. We provide a succinct description of each tool and suggest which tool is most appropriate for the given different scenarios. Given the multitude of similar yet non-identical tools, researchers can use this review as a guide to inform their choice of DNA sequence simulation tool. This paves the way towards assessing existing tools in a unified framework, as well as enabling different simulation scenario analysis within the same framework.
Assuntos
Simulação por Computador , DNA/análise , DNA/genética , Genoma Humano , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
BACKGROUND: Several studies have shown a high rate of consanguinity and endogamy in North African populations. As a result, the frequency of autosomal recessive diseases is relatively high in the region with the co-occurrence of two or more diseases. METHODS: We report here on a consanguineous Libyan family whose child was initially diagnosed as presenting Fanconi anemia (FA) with uncommon skeletal deformities. The chromosome breakage test has been performed using mitomycin C (MMC) while molecular analysis was performed by a combined approach of linkage analysis and whole exome sequencing. RESULTS: Cytogenetic analyses showed that the karyotype of the female patient is 46,XY suggesting the diagnosis of a disorder of sex development (DSD). By looking at the genetic etiology of FA and DSD, we have identified p.[Arg798*];[Arg798*] mutation in FANCJ (OMIM #605882) gene responsible for FA and p.[Arg108*];[Arg1497Trp] in EFCAB6 (Gene #64800) gene responsible for DSD. In addition, we have incidentally discovered a novel mutation p.[Gly1372Arg];[Gly1372Arg] in the ERCC6 (CSB) (OMIM #609413) gene responsible for COFS that might explain the atypical severe skeletal deformities. CONCLUSION: The co-occurrence of clinical and overlapping genetic heterogeneous entities should be taken into consideration for better molecular and genetic counseling.