Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Scand J Immunol ; 86(3): 143-155, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671713

RESUMO

The complement and neutrophil defence systems, as major components of innate immunity, are activated during inflammation and infection. For neutrophil migration to the inflamed region, we hypothesized that the complement activation product C5a induces significant changes in cellular morphology before chemotaxis. Exposure of human neutrophils to C5a dose- and time-dependently resulted in a rapid C5a receptor-1 (C5aR1)-dependent shape change, indicated by enhanced flow cytometric forward-scatter area values. Similar changes were observed after incubation with zymosan-activated serum and in blood neutrophils during murine sepsis, but not in mice lacking the C5aR1. In human neutrophils, Amnis high-resolution digital imaging revealed a C5a-induced decrease in circularity and increase in the cellular length/width ratio. Biomechanically, microfluidic optical stretching experiments indicated significantly increased neutrophil deformability early after C5a stimulation. The C5a-induced shape changes were inhibited by pharmacological blockade of either the Cl-/HCO3--exchanger or the Cl- -channel. Furthermore, actin polymerization assays revealed that C5a exposure resulted in a significant polarization of the neutrophils. The functional polarization process triggered by ATP-P2X/Y-purinoceptor interaction was also involved in the C5a-induced shape changes, because pretreatment with suramin blocked not only the shape changes but also the subsequent C5a-dependent chemotactic activity. In conclusion, the data suggest that the anaphylatoxin C5a regulates basic neutrophil cell processes by increasing the membrane elasticity and cell size as a consequence of actin-cytoskeleton polymerization and reorganization, transforming the neutrophil into a migratory cell able to invade the inflammatory site and subsequently clear pathogens and molecular debris.


Assuntos
Citoesqueleto de Actina/imunologia , Forma Celular/imunologia , Complemento C5a/metabolismo , Inflamação/imunologia , Neutrófilos/imunologia , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Quimiotaxia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Complemento C5a/imunologia , Humanos , Ativação de Neutrófilo , Neutrófilos/patologia , Receptor da Anafilatoxina C5a/metabolismo , Receptores Purinérgicos P2X/metabolismo , Transdução de Sinais
2.
J Immunol Res ; 2018: 8173983, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850639

RESUMO

Following severe tissue injury, patients are exposed to various danger- and microbe-associated molecular patterns, which provoke a strong activation of the neutrophil defense system. Neutrophils trigger and modulate the initial posttraumatic inflammatory response and contribute critically to subsequent repair processes. However, severe trauma can affect central neutrophil functions, including circulation half-life, chemokinesis, phagocytosis, cytokine release, and respiratory burst. Alterations in neutrophil biology may contribute to trauma-associated complications, including immune suppression, sepsis, multiorgan dysfunction, and disturbed tissue regeneration. Furthermore, there is evidence that neutrophil actions depend on the quality of the initial stimulus, including trauma localization and severity, the micromilieu in the affected tissue, and the patient's overall inflammatory status. In the present review, we describe the effects of severe trauma on the neutrophil phenotype and dysfunction and the consequences for tissue repair. We particularly concentrate on the role of neutrophils in wound healing, lung injury, and bone fractures, because these are the most frequently affected tissues in severely injured patients.


Assuntos
Osso e Ossos/imunologia , Fraturas Ósseas/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Sepse/imunologia , Pele/imunologia , Ferimentos e Lesões/imunologia , Animais , Osso e Ossos/patologia , Citocinas/metabolismo , Humanos , Pulmão/patologia , Ativação de Neutrófilo , Estresse Oxidativo , Fagocitose , Pele/patologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA