RESUMO
Interest in deploying deep reinforcement learning (DRL) models on low-power edge devices, such as Autonomous Mobile Robots (AMRs) and Internet of Things (IoT) devices, has seen a significant rise due to the potential of performing real-time inference by eliminating the latency and reliability issues incurred from wireless communication and the privacy benefits of processing data locally. Deploying such energy-intensive models on power-constrained devices is not always feasible, however, which has led to the development of model compression techniques that can reduce the size and computational complexity of DRL policies. Policy distillation, the most popular of these methods, can be used to first lower the number of network parameters by transferring the behavior of a large teacher network to a smaller student model before deploying these students at the edge. This works well with deterministic policies that operate using discrete actions. However, many real-world tasks that are power constrained, such as in the field of robotics, are formulated using continuous action spaces, which are not supported. In this work, we improve the policy distillation method to support the compression of DRL models designed to solve these continuous control tasks, with an emphasis on maintaining the stochastic nature of continuous DRL algorithms. Experiments show that our methods can be used effectively to compress such policies up to 750% while maintaining or even exceeding their teacher's performance by up to 41% in solving two popular continuous control tasks.
RESUMO
IEEE 802.11 (Wi-Fi) is one of the technologies that provides high performance with a high density of connected devices to support emerging demanding services, such as virtual and augmented reality. However, in highly dense deployments, Wi-Fi performance is severely affected by interference. This problem is even worse in new standards, such as 802.11n/ac, where new features such as Channel Bonding (CB) are introduced to increase network capacity but at the cost of using wider spectrum channels. Finding the best channel assignment in dense deployments under dynamic environments with CB is challenging, given its combinatorial nature. Therefore, the use of analytical or system models to predict Wi-Fi performance after potential changes (e.g., dynamic channel selection with CB, and the deployment of new devices) are not suitable, due to either low accuracy or high computational cost. This paper presents a novel, data-driven approach to speed up this process, using a Graph Neural Network (GNN) model that exploits the information carried in the deployment's topology and the intricate wireless interactions to predict Wi-Fi performance with high accuracy. The evaluation results show that preserving the graph structure in the learning process obtains a 64% increase versus a naive approach, and around 55% compared to other Machine Learning (ML) approaches when using all training features.