Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(50): e202300364, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37541431

RESUMO

A series of new conjugates comprised from a small synthetic antimicrobial peptide (AMP) and a siderophore-type vector component was designed and tested for activity on P. aeruginosa PAO1 and several genetically modified strains. As AMP, the well-established arginine-tryptophane combination K(RW)3 (P1) was chosen with an added lysine for siderophore attachment. This peptide is easy to prepare, modify, and possesses good anti-bacterial activity. On the vector part, we examined several moieties: (i) the natural siderophore deferoxamine (DFO); (ii) bidentate iron chelators based on the hydroxamate building block (4 a-c) ; (iii) the non-siderophore chelators deferasirox (DFX) and deferiprone-carboxylate (DFP-COOH). All conjugates were prepared by solid phase synthesis techniques and fully characterized by HPLC and mass spectrometry (including HR-MS). 55 Fe uptake assays indicate a receptor-mediated uptake for 4 a-c, DFP-COOH and DFO, which is dependent on the outer membrane transporter FoxA in the case of DFO. All conjugates showed increased antibacterial activity against P. aeruginosa compared to the parent peptide P1 alone when investigated in iron-depleted medium. MIC values were as low as 2 µM (for P1-DFP) on wild type P. aeruginosa. The activity of P1-DFO and P1-DFP was even better on genetically mutated strains unable to produce siderophores (down to 0.5 µM). Although the DFX vector on its own was not able to transport iron inside the bacterial cell as shown by 55 Fe uptake studies, the P1-DFX conjugate had excellent antibacterial activity compared to P1 (2 µM, and as low as 0.25 µM on a receptor-deficient strain unable to produce siderophores), suggesting that the conjugates were indeed recognized and internalized by an (unknown) transporter. Control experiments with an equimolar mixture of P1 and DFX confirm that the observed activity is intrinsic to vectorization. This work thus demonstrates the power of linking small AMPs covalently to siderophores for a new class of Trojan Horse antibiotics, with P1-DFP and P1-DFX being the most potent conjugates.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Sideróforos/química , Ferro/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Membrana Transportadoras , Peptídeos , Proteínas de Transporte
2.
Chemistry ; 29(8): e202202536, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36355416

RESUMO

Due to rising resistance, new antibacterial strategies are needed, including methods for targeted antibiotic release. As targeting vectors, chelating molecules called siderophores that are released by bacteria to acquire iron have been investigated for conjugation to antibacterials, leading to the clinically approved drug cefiderocol. The use of small-molecule catalysts for prodrug activation within cells has shown promise in recent years, and here we investigate siderophore-linked ruthenium catalysts for the activation of antibacterial prodrugs within cells. Moxifloxacin-based prodrugs were synthesised, and their catalyst-mediated activation was demonstrated under anaerobic, biologically relevant conditions. In the absence of catalyst, decreased antibacterial activities were observed compared to moxifloxacin versus Escherichia coli K12 (BW25113). A series of siderophore-linked ruthenium catalysts were investigated for prodrug activation, all of which displayed a combinative antibacterial effect with the prodrug, whereas a representative example displayed little toxicity against mammalian cell lines. By employing complementary bacterial growth assays, conjugates containing siderophore units based on catechol and azotochelin were found to be most promising for intracellular prodrug activation.


Assuntos
Pró-Fármacos , Rutênio , Animais , Sideróforos , Pró-Fármacos/farmacologia , Moxifloxacina , Antibacterianos/farmacologia , Mamíferos/metabolismo
3.
Inorg Chem ; 62(35): 14310-14317, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37611203

RESUMO

Ruthenium piano-stool complexes have been explored for their anticancer activity and some promising compounds have been reported. Herein, we conjugated a derivative of plecstatin-1 to peptides in order to increase their cancer cell targeting ability. For this purpose, plecstatin-1 was modified at the arene ligand to introduce a functional amine handle (3), which resulted in a compound that showed similar activity in an in vitro anticancer activity assay. The cell-penetrating peptide TAT48-60, tumor-targeting neurotensin8-13, and plectin-targeting peptide were functionalized with succinyl or ß-Ala-succinyl linkers under standard solid-phase peptide synthesis (SPPS) conditions to spatially separate the peptide backbones from the bioactive metal complexes. These modifications allowed for conjugating precursor 3 to the peptides on resin yielding the desired metal-peptide conjugates (MPCs), as confirmed by high-performance liquid chromatography (HPLC), NMR spectroscopy, and mass spectrometry (MS). The MPCs were studied for their behavior in aqueous solution and under acidic conditions and resembled that of the parent compound plecstatin-1. In in vitro anticancer activity studies in a small panel of cancer cell lines, the TAT-based MPCs showed the highest activity, while the other MPCs were virtually inactive. However, the MPCs were significantly less active than the small molecules plecstatin-1 and 3, which can be explained by the reduced cell uptake as determined by inductively coupled plasma MS (ICP-MS). Although the MPCs did not display potent anticancer activities, the developed conjugation strategy can be extended toward other metal complexes, which may be able to utilize the targeting properties of peptides.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Rutênio/farmacologia , Antineoplásicos/farmacologia , Peptídeos , Aminas
4.
Chemistry ; 28(12): e202104049, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34967066

RESUMO

The number of donor atoms available on peptides that can competitively coordinate to metal centers renders the site-selective generation of advanced metal-peptide conjugates in high purity a challenging venture. Herein, we present a transmetalation-based synthetic approach on solid support in which an imidazolium pro-ligand can be used to selectively anchor a range of transition metal half-sandwich complexes onto peptides in the presence of multiple coordinative motifs. Amenable to solid support, a range of N-terminus and/or lysine conjugated metal-peptide conjugates were obtained in high purity after cleavage from the resin. The metalated peptides were evaluated for their anticancer properties against human cancer cell lines. While no cytotoxic activity was observed, this platform has the potential to i) provide a pathway to site-selective peptide labelling, ii) be explored as a biorthogonal handle and/or iii) generate a new strategy for ligand design in transition metal catalysts.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Peptídeos , Complexos de Coordenação/toxicidade , Humanos , Ligantes , Compostos Organometálicos/toxicidade , Peptídeos/química , Elementos de Transição
5.
J Biol Inorg Chem ; 26(5): 599-615, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34292404

RESUMO

A series of novel water-soluble short peptide-bioconjugates containing a ferrocenoyl (Fc) or ruthenocenoyl (Rc) unit was synthesized and characterized to combine the unique activity of ferrocene and the isoelectronic ruthenocene with precisely designed peptide structures. We aim at evaluating these bioconjugates as a new class of OrganoMetallic Short AntiMicrobial Peptides (OM-SAMPs). The series of OM-SAMPs was designed with a set of linear and "head-to-tail" cyclic metallocene-based hexapeptides derived from the homo-sequence H-KKKKKK-NH2 by substitution of lysine (K) by tryptophan (W) and by orthogonal derivatization of the ε-N-amine group of lysine by a metallocene moiety. Peptide conjugates were characterized by RP-HPLC, mass spectrometry (ESI and MALDI-TOF) and circular dichroism (CD) spectroscopy. Gram-positive and Gram-negative antibacterial activity testings were carried out to explore the role of insertion of the metallocene fragment into the peptide, and the effect of the modification of the cationic charge and aromatic residues on the physiochemical properties of these OM-SAMPs. These results show that the insertion of two tryptophan residues and ferrocenoyl/ruthenocenoyl moieties into a linear homo-sequence peptides increase significantly their antibacterial activity with minimum inhibitory concentration values as low as 5 µM for the most active compounds. However, "head-to-tail" cyclic metallocene-based hexapeptides were not active against Gram-negative bacteria up to concentrations of 50 µM. These studies provide a better understanding of the role of structural modifications to enhance antibacterial peptide activity, which is promising for their therapeutic application.


Assuntos
Antibacterianos/farmacologia , Compostos Ferrosos/farmacologia , Metalocenos/farmacologia , Oligopeptídeos/farmacologia , Compostos Organometálicos/farmacologia , Técnicas de Síntese em Fase Sólida , Antibacterianos/síntese química , Antibacterianos/química , Compostos Ferrosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Metalocenos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Compostos Organometálicos/química , Solubilidade , Água/química
6.
Chemistry ; 27(22): 6783-6794, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33755263

RESUMO

Complexes of RhI and IrI of the [M(COD)(NHC)X] type (where M=Rh or Ir, COD=1,5-cyclooctadiene, NHC=N-heterocyclic carbene, and X=halide) have recently shown promising cytotoxic activities against several cancer cell lines. Initial mechanism of action studies provided some knowledge about their interaction with DNA and proteins. However, information about their cellular localization remains scarce owing to luminescence quenching within this complex type. Herein, the synthesis of two rare examples of luminescent RhI and IrI [M(COD)(NHC)I] complexes with 1,8-naphthalimide-based emitting ligands is reported. All new complexes are comprehensively characterized, including with single-crystal X-ray structures. Steric crowding in one derivative leads to two distinct rotamers in solution, which apparently can be distinguished both by pronounced NMR shifts and by their respective spectral and temporal emission signatures. When the photophysical properties of these new complexes are exploited for cellular imaging in HT-29 and PT-45 cancer cell lines, it is demonstrated that the complexes accumulate predominantly in the endoplasmic reticulum, which is an entirely new finding and provides the first insight into the cellular localization of such IrI (NHC) complexes.


Assuntos
Irídio , Compostos Organometálicos , Retículo Endoplasmático , Luminescência , Metano/análogos & derivados , Estrutura Molecular
7.
Chem Rev ; 119(2): 829-869, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30618246

RESUMO

Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.


Assuntos
Complexos de Coordenação/química , Nanopartículas Metálicas/química , Metais/química , Animais , Catálise , Reação de Cicloadição , Glutationa/química , Humanos , NAD/química , Oxirredução
8.
Artigo em Inglês | MEDLINE | ID: mdl-33046497

RESUMO

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Assuntos
Antibacterianos , Proteômica , Antibacterianos/farmacologia , Bacillus subtilis , Proteínas de Bactérias/genética , Tetraciclinas
9.
Chemistry ; 26(53): 12085, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32865841

RESUMO

Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.


Assuntos
Peptídeos , Medicina de Precisão , Ouro/química , Humanos
10.
Chemistry ; 26(53): 12158-12167, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32542887

RESUMO

Diverse iridium peptide bioconjugates and the corresponding iridium/gold bimetallic complexes have been synthesized starting from a cyclometallated carboxylic acid substituted IrIII complex [Ir(ppy)2 (Phen-5-COO)] by solid phase peptide synthesis (SPPS). The selected peptide sequences were an enkephalin derivative Tyr-Gly-Gly-Phe-Leu together with the propargyl-substituted species Tyr-Gly-Pgl-Phe-Leu to allow gold coordination (Pgl: propyrgyl-glycine, HC≡C-Gly), and a specific short peptide, Ala-Cys-Ala-Phen, containing a cysteine residue. Introduction of the gold center has been achieved via a click reaction with the alkynyl group leading to an organometallic Au-C(triazole) species, or by direct coordination to the sulfur atom of the cysteine. The photophysical properties of these species revealed predominantly an emission originating from the Ir complex, using mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. The formation of the peptide bioconjugates caused a systematic redshift of the emission profiles. Lysosomal accumulation was observed for all the complexes, in contrast to the expected mitochondrial accumulation triggered by the gold complexes. Only the cysteine-containing Ir/Au bioconjugate displayed cytotoxic activity. The absence of activity may be related to the lack of endosomal/lysosomal escape for the cationic peptide conjugates. Interestingly, the different coordination sphere of the gold atom may play a crucial role, as the Au-S(cysteine) bond may be more readily cleaved in a biological environment than the Au-C(triazole) bond, and thus the Au fragment could be released from or trapped in the lysosomes, respectively. This work represents a starting point in the development of bimetallic peptide bioconjugates as theranostics and in the knowledge of factors that contribute to anti-proliferative activity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos Organometálicos , Humanos , Irídio , Peptídeos/química , Medicina de Precisão
11.
Nat Chem Biol ; 14(12): 1133-1139, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429602

RESUMO

Infochemicals play important roles in aquatic ecosystems. They even modify food web interactions, such as by inducing defenses in prey. In one classic but still not fully understood example, the planktonic freshwater crustacean Daphnia pulex forms specific morphological defenses (neckteeth) induced by chemical cues (kairomones) released from its predator, the phantom midge larva Chaoborus. On the basis of liquid chromatography, mass spectrometry, and chemical synthesis, we report here the chemical identity of the Chaoborus kairomone. The biologically active cues consist of fatty acids conjugated to the amino group of glutamine via the N terminus. These cues are involved in Chaoborus digestive processes, which explains why they are consistently released despite the disadvantage for its emitter. The identification of the kairomone may allow in-depth studies on multiple aspects of this inducible defense system.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Dípteros/química , Feromônios/química , Feromônios/farmacologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Glutamina/química , Ensaios de Triagem em Larga Escala/métodos , Larva , Lipídeos/química , Espectrometria de Massas/métodos , Feromônios/administração & dosagem , Relação Estrutura-Atividade
12.
Langmuir ; 36(37): 10996-11004, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32830498

RESUMO

Peptide-functionalized surfaces, composed of optimized l-peptides, show a high resistance toward nonspecific adsorption of proteins. As l-peptides are known to be prone to proteolytic degradation, the aim of this work is to enhance the stability against enzymatic degradation by using the all d-peptide mirror image of the optimized l-peptides and to determine if the all d-enantiomer retains the protein-resistant and antifouling properties. Two l-peptides and their d-peptide mirror images, some of them containing the nonproteinogenic amino acid α-aminoisobutyric acid (Aib), were synthesized and tested against non-specific adsorption of the proteins lysozyme and fibrinogen and the settlement of marine diatom Navicula perminuta and marine bacteria Cobetia marina. Both the d-enantiomer and the insertion of Aib protected the peptides from proteolytic degradation. Protein resistance was enhanced with the d-enantiomers while maintaining the resistance toward diatoms.

13.
Inorg Chem ; 59(23): 17191-17199, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33180473

RESUMO

While most Rh-N-heterocyclic carbene (NHC) complexes currently investigated in anticancer research contain a Rh(III) metal center, an increasing amount of research is focusing on the cytotoxic activity and mode of action of square-planar [RhCl(COD)(NHC)] (where COD = 1,5-cyclooctadiene) which contains a Rh(I) center. The enzyme thioredoxin reductase (TrxR) and the protein albumin have been proposed as potential targets, but the molecular processes taking place upon protein interaction remain elusive. Herein, we report the preparation of peptide-conjugated and its nonconjugated parent [RhCl(COD)(NHC)] complexes, an in-depth investigation of both their stability in solution, and a crystallographic study of protein interaction. The organorhodium compounds showed a rapid loss of the COD ligand and slow loss of the NHC ligand in aqueous solution. These ligand exchange reactions were reflected in studies on the interaction with hen egg white lysozyme (HEWL) as a model protein in single-crystal X-ray crystallographic investigations. Upon treatment of HEWL with an amino acid functionalized [RhCl(COD)(NHC)] complex, two distinct rhodium adducts were found initially after 7 d of incubation at His15 and after 4 weeks also at Lys33. In both cases, the COD and chlorido ligands had been substituted with aqua and/or hydroxido ligands. While the histidine (His) adduct also indicated a loss of the NHC ligand, the lysine (Lys) adduct retained the NHC core derived from the amino acid l-histidine. In either case, an octahedral coordination environment of the metal center indicates oxidation to Rh(III). This investigation gives the first insight on the interaction of Rh(I)(NHC) complexes and proteins at the molecular level.


Assuntos
Complexos de Coordenação/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Muramidase/química , Ródio/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Metano/química , Modelos Moleculares , Estrutura Molecular , Muramidase/metabolismo
14.
Inorg Chem ; 59(20): 15526-15540, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32993294

RESUMO

The reaction of 2-{2-(benzo[1,3]dioxol-5-yl)- diazo}-4-methylphenol (HL) with [Ru(PPh3)3Cl2] in ethanol resulted in the carbonylated ruthenium complex [RuL(PPh3)2(CO)] (1), wherein metal-assisted decarbonylation via in situ ethanol dehydrogenation is observed. When the reaction was performed in acetonitrile, however, the complex [RuL(PPh3)2(CH3CN)] (2) was obtained as the main product, probably by trapping of a common intermediate through coordination of CH3CN to the Ru(II) center. The analogous reaction of HL with [Ir(PPh3)3Cl] in ethanol did not result in ethanol decarbonylation and instead gave the organoiridium hydride complex [IrL(PPh3)2(H)] (3). Unambiguous evidence for the generation of CO via ruthenium-assisted ethanol oxidation is provided by the synthesis of the 13C-labeled complex, [Ru(PPh3)2L(13CO)] (1A) using isotopically labeled ethanol, CH313CH2OH. To summarize all the evidence, a ruthenium-assisted mechanistic pathway for the decarbonylation and generation of alkane via alcohol dehydrogenation is proposed. In addition, the in vitro antiproliferative activity of complexes 1-3 was tested against human cervical (HeLa) and human colorectal adenocarcinoma (HT-29) cell lines. Complexes 1-3 showed impressive cytotoxicity against both HeLa (half-maximal inhibitory concentration (IC50) value of 3.84-4.22 µM) and HT-29 cancer cells (IC50 values between 3.3 and 4.5 µM). Moreover, the complexes were comparatively less toxic to noncancerous NIH-3T3 cells.


Assuntos
Antineoplásicos/farmacologia , Monóxido de Carbono/síntese química , Complexos de Coordenação/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Isótopos de Carbono/química , Catálise , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Etanol/química , Humanos , Irídio/química , Marcação por Isótopo , Camundongos , Células NIH 3T3 , Oxirredução , Rutênio/química
15.
Inorg Chem ; 59(5): 3281-3289, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32073260

RESUMO

Metal complexes provide a versatile platform to develop novel anticancer pharmacophores, and they form stable compounds with N-heterocyclic carbene (NHC) ligands, some of which have been shown to inhibit the cancer-related selenoenzyme thioredoxin reductase (TrxR). To expand a library of isostructural NHC complexes, we report here the preparation of RhIII- and IrIII(Cp*)(NHC)Cl2 (Cp* = η5-pentamethylcyclopentadienyl) compounds and comparison of their properties to the RuII- and OsII(cym) analogues (cym = η6-p-cymene). Like the RuII- and OsII(cym) complexes, the RhIII- and IrIII(Cp*) derivatives exhibit cytotoxic activity with half maximal inhibitory concentration (IC50) values in the low micromolar range against a set of four human cancer cell lines. In studies on the uptake and localization of the compounds in cancer cells by X-ray fluorescence microscopy, the Ru and Os derivatives were shown to accumulate in the cytoplasmic region of treated cells. In an attempt to tie the localization of the compounds to the inhibition of the tentative target TrxR, it was surprisingly found that only the Rh complexes showed significant inhibitory activity at IC50 values of ∼1 µM, independent of the substituents on the NHC ligand. This indicates that, although TrxR may be a potential target for anticancer metal complexes, it is unlikely the main target or the sole target for the Ru, Os, and Ir compounds described here, and other targets should be considered. In contrast, Rh(Cp*)(NHC)Cl2 complexes may be a scaffold for the development of TrxR inhibitors.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Ligantes , Metais Pesados/química , Metais Pesados/farmacologia , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Conformação Molecular , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/metabolismo
16.
J Biol Chem ; 293(32): 12429-12439, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980601

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule with many beneficial effects. However, its cellular concentration is strictly regulated to avoid toxicity. Persulfide dioxygenase (PDO or ETHE1) is a mononuclear non-heme iron-containing protein in the sulfide oxidation pathway catalyzing the conversion of GSH persulfide (GSSH) to sulfite and GSH. PDO mutations result in the autosomal-recessive disorder ethylmalonic encephalopathy (EE). Here, we developed γ-glutamyl-homocysteinyl-glycine (GHcySH), in which the cysteinyl moiety in GSH is substituted with homocysteine, as a mechanism-based PDO inhibitor. Human PDO used GHcySH as an alternative substrate and converted it to GHcy-SO2H, mimicking GS-SO2H, the putative oxygenated intermediate formed with the natural substrate. Because GHcy-SO2H contains a C-S bond rather than an S-S bond in GS-SO2H, it failed to undergo the final hydrolysis step in the catalytic cycle, leading to PDO inhibition. We also characterized the biochemical penalties incurred by the L55P, T136A, C161Y, and R163W mutations reported in EE patients. The variants displayed lower iron content (1.4-11-fold) and lower thermal stability (1.2-1.7-fold) than WT PDO. They also exhibited varying degrees of catalytic impairment; the kcat/Km values for R163W, L55P, and C161Y PDOs were 18-, 42-, and 65-fold lower, respectively, and the T136A variant was most affected, with a 200-fold lower kcat/Km Like WT enzyme, these variants were inhibited by GHcySH. This study provides the first characterization of an intermediate in the PDO-catalyzed reaction and reports on deficits associated with EE-linked mutations that are distal from the active site.


Assuntos
Glicina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Sulfetos/farmacologia , Domínio Catalítico , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Oxirredução , Ligação Proteica , Conformação Proteica
17.
Mol Pharm ; 16(11): 4572-4581, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596097

RESUMO

Cell-targeting peptides (CTPs) are increasingly used in the field of cancer research due to their high affinity and specificity to cell or tissue targets. In the search for novel metal-based drug candidates, our research group is particularly focused on bioconjugates by utilizing peptides to increase the selectivity of cytotoxic organometallic compounds. Motivated by the relatively high cytotoxic activity of gold complexes, such as Auranofin (approved to treat rheumatoid arthritis), for the treatment of various diseases, we anticipated that gold peptide bioconjugates would present interesting candidates for novel breast cancer therapies. For this, we investigate the use of the natural compound lipoic acid (Lpa) as a bioconjugation handle to link Au complexes in the oxidation state +III to peptides using the dithiol moiety. Using this strategy, we have synthesized Au(III) complex bioconjugates linked to the linear LTVSPWY peptide and two cyclic DfKRG and KTTHWGFTLG tumor-targeting peptides. Solid-phase peptide synthesis (SPPS) was used to prepare the peptides, with lipoic acid introduced N-terminally as a conjugation handle. After peptide cleavage, the metal complex was introduced in solution by first reducing the internal disulfide bond, followed by reaction with Au(ppy)Cl2 (1, ppy: 2-phenyl-pyridine), to yield the Au(III)-Lpa-peptide bioconjugates. The new bioconjugates were successfully synthesized, purified by semi-preparative HPLC, and characterized by ESI-MS. Au(III)-peptide bioconjugates were tested as cytotoxic agents against two different human breast cancer cell lines (MCF-7 and MDA-MB-231) and normal human fibroblasts cells (GM5657T) and compared to cisplatin, the parent Au(III) dichloride complex, and metal-free peptides. These in vitro data show that the Au(III)-peptide bioconjugate 5, possessing the cyclic integrin-targeting RGD-derived peptide sequence in the structure, exhibits improved activity compared to the parent gold(III) compound Au(ppy)Cl2 (1) as well as to cisplatin or the metal-free peptide. Moreover, the excellent targeting properties of 5 are supported by the fact that a Au(III)-peptide conjugate with the exact same peptide sequence, but a linear rather than the cyclic form of 5 exhibits 10 times lower cytotoxic activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cisplatino/química , Cisplatino/farmacologia , Ouro/química , Compostos Organometálicos/química , Peptídeos Cíclicos/química , Ácido Tióctico/química , Antineoplásicos , Auranofina/química , Auranofina/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Células MCF-7 , Oligopeptídeos/química
18.
Inorg Chem ; 58(14): 9404-9413, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31246015

RESUMO

A simple "click-chemistry" approach was employed in order to functionalize the known antibiotic fragment sulfanilamide with a bidentate pyridyl-triazole pocket, which allowed for the synthesis of ruthenium(II) and rhenium(I) carbonyl chloride complexes. Six new complexes were prepared and comprehensively characterized, including five single crystal X-ray structures, photophysical characterization, and testing for antimicrobial activity. Interestingly, functionalization of the pyridine ring with an ortho-hydroxymethyl group resulted in a greater than 100-fold increase in the rate of ligand release in a dimethylsulfoxide solution. Subsequent studies indicated this process could be further accelerated by irradiation with 265 nm light. Structural characterization of four of the complexes indicates that this is the result of a lengthening and weakening of the Re-NPyridine bond (average (Ltri) = 2.19 Å vs LtriOH = 2.25 Å) due to the steric influence of the hydroxymethyl group. The organometallic rhenium(I) pyridyl-triazole functionality maintains its characteristic fluorescent properties despite the presence of the sulfonamide moiety. Two of the compounds showed modest antimicrobial activity against methicillin-resistant Staphylococcus aureus, whereas the structurally similar sulfamethoxazole alone showed no activity under the same conditions.


Assuntos
Cobre/química , Metais/química , Sulfanilamida/análogos & derivados , Sulfanilamida/química , Catálise , Química Click , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
19.
Acc Chem Res ; 50(10): 2510-2518, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28953347

RESUMO

Resistance of pathogenic bacteria against currently marketed antibiotics is again increasing. To meet the societal need for effective cures, scientists are faced with the challenge of developing more potent but equally bacteria-specific drugs. Currently, most efforts are directed toward the modification of existing antibiotics, but ideally, compounds with a new mode of action are required. In this Account, we detail our findings in the area of novel metal-based antibiotics. Our strategy is based on the modification of simple antimicrobial peptides (AMPs) with organometallic agents, resulting in organometallic AMPs (OM-AMPs). Since bacteria have most likely never encountered these synthetically prepared unnatural organometallic agents, we anticipated that such agents could well become potentiating players in the antibiotics arena. Moreover, exploiting some of the particular properties of metal complexes should also help to elucidate the mode of action of small cationic AMPs, the molecular details of which have remained elusive despite intensive efforts. Using standard Fmoc/tBu-based solid-phase peptide synthesis approaches, we have prepared various organometallic-peptide conjugates with covalently linked group 8 and 9 metallocenes (ferrocene, ruthenocene, osmocene, and cobaltocenium). As a starting point we took the (RW)3 antibacterial hexapeptide lead structure. After modifying the peptide sequence (generations 1 and 2), changing the nature and position of the organometallic group (generation 3), and optimizing the amino acid chirality (generation 5), we identified several organometallic antibacterial peptides that are currently among the most active synthetic AMPs (synAMPs) that have ever been prepared. Through these rational and systematic optimizations, we were able to increase the antibacterial activity of a short non-organometallic synAMP 18-fold to submicromolar activity, rivaling the activity of vancomycin (often the drug of last resort) against methicillin-resistant Staphylococcus aureus (MRSA). Moreover, by making use of the unique physicochemical properties of ruthenocene, we were able to determine the mode of action of these short AMPs in unprecedented detail. We propose that the OM-AMP integrates into the bacterial membrane and changes its biophysical properties, which ultimately results in detachment of vital enzymes for respiration and cell-wall biosynthesis such as specifically cytochrome c and MurG from their locations in the membrane. Further explorations of these small OM-AMP derivatives that are summarized in this Account include lipid substitution, multivalent display of metalated di- or tripeptides on a trivalent scaffold with different linkers, and increasing the metal-to-peptide ratio such that every tryptophan in the (RW)3 scaffold is eventually replaced by a metalated lysine. While initial experiments with our OM-AMPs for systemic applications were largely disappointing, these OM-AMPs turned out to be potent antibiotics for topical applications. In this sense, two applications are described as examples in this Account, namely, bacterial decontamination of wastewater by reverse osmosis membranes (coated with our OM-AMPs by Cu-catalyzed azide-alkyne cycloaddition reaction) and synergistic activities of one of our synAMPs with colistin and tobramycin for the treatment of Pseudomonas aeruginosa infections that are associated with cystic fibrosis.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Compostos Organometálicos/farmacologia , Sequência de Aminoácidos , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Colistina/farmacologia , Sinergismo Farmacológico , Proteínas de Membrana/metabolismo , Metais Pesados/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Técnicas de Síntese em Fase Sólida , Tobramicina/farmacologia
20.
Chem Rev ; 116(19): 11797-11839, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627217

RESUMO

Peptides are important biological molecular entities in biomedical research. They can be prepared in a large variety of shapes, with a host of chemical functions, and tailored for specific applications. Organometallic medicinal chemistry is a relatively young field that explores biomedical and bioanalytical applications of organometallic complexes, that is, metal compounds with at least one direct, covalent metal-carbon bond. The conjugation of peptides to such medicinally active organometallic moieties started only about 20 years ago, and it has been very beneficial for the development of bioorganometallic chemistry in general. Similarly, the biomedical properties of peptides have been altered by their conjugation to organometallic (OM) moieties. In this review, synthetic methods by which OM moieties can be conjugated to peptides via a carbon-metal bond are described, and selected medicinal applications of such conjugates are discussed. Inorganic coordination complexes between metal ions and peptides are excluded from this review. Also, the labeling of peptides with radiometals and applications of radiolabeled peptides will not be treated herein. First, modifications of the peptide backbone (either N- or C-terminally, or both) with organometallic moieties will be described, including the insertion of OM moieties as part of the peptide backbone. Then side-chain modifications will be reported, among them the most recent strategies for chemoselective arene metalation on peptides. Finally, approaches by which multiple metalation can be achieved are explored. In each section, selected examples of biological applications are highlighted.


Assuntos
Compostos Organometálicos/síntese química , Peptídeos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA