Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Skin Pharmacol Physiol ; 34(4): 167-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823521

RESUMO

INTRODUCTION: Epidermolysis bullosa (EB) describes a family of rare genetic blistering skin disorders. Various subtypes are clinically and genetically heterogeneous, and a lethal postpartum form of EB is the generalized severe junctional EB (gs-JEB). gs-JEB is mainly caused by premature termination codon (PTC) mutations in the skin anchor protein LAMB3 (laminin subunit beta-3) gene. The ribosome in majority of translational reads of LAMB3PTC mRNA aborts protein synthesis at the PTC signal, with production of a truncated, nonfunctional protein. This leaves an endogenous readthrough mechanism needed for production of functional full-length Lamb3 protein albeit at insufficient levels. Here, we report on the development of drugs targeting ribosomal protein L35 (rpL35), a ribosomal modifier for customized increase in production of full-length Lamb3 protein from a LAMB3PTC mRNA. METHODS: Molecular docking studies were employed to identify small molecules binding to human rpL35. Molecular determinants of small molecule binding to rpL35 were further characterized by titration of the protein with these ligands as monitored by nuclear magnetic resonance (NMR) spectroscopy in solution. Changes in NMR chemical shifts were used to map the docking sites for small molecules onto the 3D structure of the rpL35. RESULTS: Molecular docking studies identified 2 FDA-approved drugs, atazanavir and artesunate, as candidate small-molecule binders of rpL35. Molecular interaction studies predicted several binding clusters for both compounds scattered throughout the rpL35 structure. NMR titration studies identified the amino acids participating in the ligand interaction. Combining docking predictions for atazanavir and artesunate with rpL35 and NMR analysis of rpL35 ligand interaction, one binding cluster located near the N-terminus of rpL35 was identified. In this region, the nonidentical binding sites for atazanavir and artesunate overlap and are accessible when rpL35 is integrated in its natural ribosomal environment. CONCLUSION: Atazanavir and artesunate were identified as candidate compounds binding to ribosomal protein rpL35 and may now be tested for their potential to trigger a rpL35 ribosomal switch to increase production of full-length Lamb3 protein from a LAMB3PTC mRNA for targeted systemic therapy in treating gs-JEB.


Assuntos
Moléculas de Adesão Celular/genética , Epidermólise Bolhosa Juncional/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Artesunato/química , Sulfato de Atazanavir/química , Epidermólise Bolhosa Juncional/patologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/fisiologia , Pele/patologia , Fenômenos Fisiológicos da Pele , Calinina
2.
Nucleic Acids Res ; 36(Database issue): D289-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18037617

RESUMO

Protein sequences are the most important source of evolutionary and functional information for new proteins. In order to facilitate the computationally intensive tasks of sequence analysis, the Similarity Matrix of Proteins (SIMAP) database aims to provide a comprehensive and up-to-date dataset of the pre-calculated sequence similarity matrix and sequence-based features like InterPro domains for all proteins contained in the major public sequence databases. As of September 2007, SIMAP covers approximately 17 million proteins and more than 6 million non-redundant sequences and provides a complete annotation based on InterPro 16. Novel features of SIMAP include a new, portlet-based web portal providing multiple, structured views on retrieved proteins and integration of protein clusters and a unique search method for similar domain architectures. Access to SIMAP is freely provided for academic use through the web portal for individuals at http://mips.gsf.de/simap/and through Web Services for programmatic access at http://mips.gsf.de/webservices/services/SimapService2.0?wsdl.


Assuntos
Bases de Dados de Proteínas , Alinhamento de Sequência , Análise de Sequência de Proteína , Internet , Estrutura Terciária de Proteína , Proteínas/classificação , Interface Usuário-Computador
3.
Bioinformatics ; 21 Suppl 2: ii42-6, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16204123

RESUMO

MOTIVATION: Sequence similarity searches are of great importance in bioinformatics. Exhaustive searches for homologous proteins in databases are computationally expensive and can be replaced by a database of pre-calculated homologies in many cases. Retrieving similarities from an incrementally updated database instead of repeatedly recalculating them should provide homologs much faster and frees computational resources for other purposes. RESULTS: We have implemented SIMAP-a database containing the similarity space formed by almost all amino acid sequences from public databases and completely sequenced genomes. The database is capable of handling very large datasets and allows incremental updates. We have implemented a powerful backbone for similarity computation, which is based on FASTA heuristics. By providing WWW interfaces as well as web services, we make our data accessible to the worldwide community. We have also adapted procedures to detect putative orthologs as example applications. AVAILABILITY: The SIMAP portal page providing links to SIMAP services is publicly available: http://mips.gsf.de/services/analysis/simap/. The web services can be accessed under http://mips.gsf.de/proj/hobitws/services/RPCSimapService?wsdl and http://mips.gsf.de/proj/hobitws/services/DocSimapService?wsdl


Assuntos
Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Homologia de Sequência de Aminoácidos , Software , Algoritmos , Sequência de Aminoácidos , Simulação por Computador , Sistemas de Gerenciamento de Base de Dados , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas/ultraestrutura , Interface Usuário-Computador
4.
Proteomics ; 5(1): 76-80, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15744835

RESUMO

Data mining, finding and integration of information about proteins of interest, is an essential component in modern biological and biomedical research. Even when focusing on a single organism and only on a small number of proteins, there are often dozens fo data sources containing relevant information. We are developing PRIME, a protein information environment, to serve as a virtual central database which integrates distributed heterogeneous information about proteins (linked by common identifier). PRIME has powerful capabilities to visualize all kinds of protein annotation in specialized views. These views can be displayed side by side at the same time and can be synchronized in order to show simultaneously different aspects of identical proteins. These features allow a quick and comprehensive overview of properties of single proteins or protein sets.


Assuntos
Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Genômica , Disseminação de Informação , Biologia Computacional , Internet , Proteômica , Software
5.
Nature ; 422(6934): 859-68, 2003 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12712197

RESUMO

Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.


Assuntos
Genes Fúngicos/genética , Genoma Fúngico , Neurospora crassa/genética , Sinalização do Cálcio/genética , Metilação de DNA , Diterpenos/metabolismo , Evolução Molecular , Duplicação Gênica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Complexos Multienzimáticos/genética , Família Multigênica/genética , Mutagênese/genética , Neurospora crassa/citologia , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Doenças das Plantas/microbiologia , Interferência de RNA , RNA Ribossômico/genética , Receptores de Superfície Celular/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA