Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 351-359, 2024 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-38686417

RESUMO

In this work, we investigated the influence of the bifurcation geometry of the iliac artery on the propagation properties of the pulse wave, and applied software to establish the straight bifurcation and curved bifurcation bi-directional fluid-solid coupling finite element analysis models based on the iliac artery, and compared and analyzed the influence of the bifurcation angle of the blood vessel on the propagation characteristics of the pulse wave. It was found that the bifurcation geometry had a significant effect on the pulse wave propagation in the iliac arteries, and the pressure and velocity pulse wave amplitudes predicted by these two models had a good agreement with that before the vessel bifurcation in a cardiac cycle. The curvilinear bifurcation model predicted the pulse wave amplitude to be lower and the pressure drop to be smaller after the bifurcation, which was more in line with the actual situation of the human body. In addition, the bifurcation point is accompanied by the stress concentration phenomenon in the vessel wall, and there is a transient increase in the velocity pulse waveform amplitude, which was consistent with the fact that the bifurcation site is prone to phenomena such as arterial stenosis and hardening. The preliminary results of this paper will provide some reference for the use of pulse waveforms in the diagnosis of arterial diseases.


Assuntos
Análise de Elementos Finitos , Artéria Ilíaca , Modelos Cardiovasculares , Análise de Onda de Pulso , Humanos , Artéria Ilíaca/fisiologia , Pressão Sanguínea/fisiologia , Fluxo Pulsátil/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador
2.
Nat Commun ; 6: 6566, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25782446

RESUMO

Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.


Assuntos
Materiais Biomiméticos , Teste de Materiais , Materiais Biocompatíveis/química , Biomimética , Sistemas de Liberação de Medicamentos , Módulo de Elasticidade , Eletrônica , Eletrofisiologia , Epiderme/metabolismo , Análise de Elementos Finitos , Dureza , Humanos , Hidrogéis/química , Imidas/química , Pele , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA