Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 179: 108155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688808

RESUMO

Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential. Toxicological relevant effects of this reference mixture were measured in eight organism- and cell-based bioassays and compared with predicted mixture effects, which were calculated based on effect data of single chemicals retrieved from literature or different databases, and via quantitative structure-activity relationships (QSARs). The results show that the EWERBmix supports the identification of substances which should be considered in future monitoring efforts. It provides measures to estimate wastewater background concentrations in rivers under consideration of respective dilution factors, and to assess the extent of mixture risks to be expected from European WWTP effluents. The EWERBmix presents a reasonable proxy for regulatory authorities to develop and implement assessment approaches and regulatory measures to address mixture risks. The highlighted data gaps should be considered for prioritization of effect testing of most prevalent and relevant individual organic micropollutants of WWTP effluent background pollution. The here provided approach and EWERBmix are available for authorities and scientists for further investigations. The approach presented can furthermore serve as a roadmap guiding the development of archetypic background mixtures for other sources, geographical settings and chemical compounds, e.g. inorganic pollutants.


Assuntos
Poluentes Ambientais , Bases de Dados Factuais , Poluição Ambiental , Geografia , Relação Quantitativa Estrutura-Atividade
2.
Chem Biol Interact ; 382: 110565, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236578

RESUMO

A crucial component of a substance registration and regulation is the evaluation of human prenatal developmental toxicity. Current toxicological tests are based on mammalian models, but these are costly, time consuming and may pose ethical concerns. The zebrafish embryo has evolved as a promising alternative model to study developmental toxicity. However, the implementation of the zebrafish embryotoxicity test is challenged by lacking information on the relevance of observed morphological alterations in fish for human developmental toxicity. Elucidating the mechanism of toxicity could help to overcome this limitation. Through LC-MS/MS and GC-MS metabolomics, we investigated whether changes to the endogenous metabolites can indicate pathways associated with developmental toxicity. To this aim, zebrafish embryos were exposed to different concentrations of 6-propyl-2-thiouracil (PTU), a compound known to induce developmental toxicity. The reproducibility and the concentration-dependence of the metabolome response and its association with morphological alterations were studied. Major morphological findings were reduced eye size, and other craniofacial anomalies; major metabolic changes included increased tyrosine, pipecolic acid and lysophosphatidylcholine levels, decreased methionine levels, and disturbance of the 'Phenylalanine, tyrosine and tryptophan biosynthesis' pathway. This pathway, and the changes in tyrosine and pipecolic acid levels could be linked to the mode of action of PTU, i.e., inhibition of thyroid peroxidase (TPO). The other findings suggested neurodevelopmental impairments. This proof-of-concept study demonstrated that metabolite changes in zebrafish embryos are robust and provide mechanistic information associated with the mode of action of PTU.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Propiltiouracila/toxicidade , Propiltiouracila/metabolismo , Cromatografia Líquida , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Metabolômica , Embrião não Mamífero/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA