Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Microbiol ; 73(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743467

RESUMO

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/virologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Virulência , Infecções por Acinetobacter/microbiologia , Animais , Mariposas/microbiologia , Mariposas/virologia , Terapia por Fagos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Larva/microbiologia , Larva/virologia
2.
Emerg Top Life Sci ; 6(4): 349-358, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205551

RESUMO

Microplastics are small (<5 mm) plastic particles of varying shapes and polymer types that are now widespread global contaminants of marine and freshwater ecosystems. Various estimates suggest that several trillions of microplastic particles are present in our global oceanic system, and that these are readily ingested by a wide range of marine and freshwater species across feeding modes and ecological niches. Here, we present some of the key and pressing issues associated with these globally important contaminants from a microbiological perspective. We discuss the potential mechanisms of pathogen attachment to plastic surfaces. We then describe the ability of pathogens (both human and animal) to form biofilms on microplastics, as well as dispersal of these bacteria, which might lead to their uptake into aquatic species ingesting microplastic particles. Finally, we discuss the role of a changing oceanic system on the potential of microplastic-associated pathogens to cause various disease outcomes using numerous case studies. We set out some key and imperative research questions regarding this globally important issue and present a methodological framework to study how and why plastic-associated pathogens should be addressed.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Organismos Aquáticos , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA